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Abstract

Human modification of water and nutrient flows has resulted in widespread degradation of

aquatic ecosystems. The resulting global water crisis causes millions of deaths and trillions

of USD in economic damages annually. Semiarid regions have been disproportionately

affected because of high relative water demand and pollution. Many proven water manage-

ment strategies are not fully implemented, partially because of a lack of public engagement

with freshwater ecosystems. In this context, we organized a large citizen science initiative to

quantify nutrient status and cultivate connection in the semiarid watershed of Utah Lake

(USA). Working with community members, we collected samples from ~200 locations

throughout the 7,640 km2 watershed on a single day in the spring, summer, and fall of 2018.

We calculated ecohydrological metrics for nutrients, major ions, and carbon. For most sol-

utes, concentration and leverage (influence on flux) were highest in lowland reaches drain-

ing directly to the lake, coincident with urban and agricultural sources. Solute sources were

relatively persistent through time for most parameters despite substantial hydrological varia-

tion. Carbon, nitrogen, and phosphorus species showed critical source area behavior, with

10–17% of the sites accounting for most of the flux. Unlike temperate watersheds, where

spatial variability often decreases with watershed size, longitudinal variability showed an

hourglass shape: high variability among headwaters, low variability in mid-order reaches,

and high variability in tailwaters. This unexpected pattern was attributable to the distribution

of human activity and hydrological complexity associated with return flows, losing river

reaches, and diversions in the tailwaters. We conclude that participatory science has great

potential to reveal ecohydrological patterns and rehabilitate individual and community
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relationships with local ecosystems. In this way, such projects represent an opportunity to

both understand and improve water quality in diverse socioecological contexts.

Introduction

Agriculture, wastewater, and fossil fuel use have exceeded global thresholds for nitrogen (N)

and phosphorus (P) [1–4], resulting in eutrophication of two-thirds of freshwater ecosystems

globally [5–8]. Excess nutrients and other water pollutants such as heavy metals and waste

from humans and livestock degrade aquatic ecosystem integrity, leading to trillions of USD in

economic damages and the premature death of approximately 2 million people annually [9–

12]. Mitigating these global water crises will require improved monitoring and management,

which themselves depend on public understanding and financial support [13–16]. Conse-

quently, improving public understanding and interaction with aquatic ecosystems is a plane-

tary priority [17–19].

Because of the high spatiotemporal variability typical of both surface and subsurface aquatic

ecosystems [20–22], identifying pollutant sources requires repeated sampling of many loca-

tions in the watershed [23–25]. This type of synoptic sampling provides a high-resolution view

of water chemistry throughout the network, potentially generating insights into hydrological

and biogeochemical processes [26–28], as well as identifying the location and spatial extent of

pollutant sources [29–31]. Pollutant sources range in size from discrete point sources, such as

a wastewater discharge, to diffuse nonpoint sources, such as runoff from agricultural fields [32,

33]. They also vary in duration, from persistent sources that are always active to intermittent

sources that only deliver pollutants to the ground or surface water during certain ecohydrolo-

gical conditions [34–36].

While measuring or modeling water chemistry continually everywhere in the stream net-

work remains impossible, a suite of ecohydrological metrics have been developed to inform

management based on repeated synoptic sampling [1, 23, 27, 29, 37]. For example, the rela-

tionship between spatial variability and watershed size can reveal the patch size of processes

driving water chemistry, revealing the relative importance of delivery from terrestrial environ-

ments and processing in aquatic environments [26, 29, 38, 39]. Likewise, the persistence of

spatial patterns in water chemistry through time can reveal changes in pollutant sources or

sinks, informing the necessary sampling frequency [23, 27, 40, 41]. In practice, high spatial

persistence of a solute in a watershed allows for a single synoptic sampling event to representa-

tively characterize its dynamics [23, 29, 40]. While synoptic sampling requires substantial

resources and coordination, combining such metrics with traditional analysis of watershed

land use and land cover could improve effectiveness of monitoring and restoration measures.

So far, these analyses have primarily been done in temperate and high-latitude ecosystems [23,

27, 38, 40], leaving important unknowns about other ecosystem types.

In semiarid and arid regions, the degradation of aquatic ecosystems has been particularly

extreme because of high water demand and low water availability for green, blue, and gray

water use [17, 34, 42–44]. This combination often results in intense hydrological and chemical

disruption of surface and groundwater in semiarid and arid watersheds, which are often

endorheic [17, 42, 43, 45]. In addition to anthropogenic pressure, aquatic ecosystems in semi-

arid regions are naturally dynamic because of extreme hydrological and biogeochemical vari-

ability [46–48]. Changes in precipitation and evapotranspiration result in large expansions

and contractions of the surface water network, and wetting and drying cycles create
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heterogeneous biogeochemical conditions [49–51]. This combination of human and natural

variability could create nutrient source and sink patterns that are distinct from temperate

regions, potentially complicating the identification and mitigation of nutrient sources in

heavily impacted semiarid watersheds.

In this context, we organized a series of participatory synoptic sampling events in the Utah

Lake watershed in the western US. We used a citizen science approach for two reasons. First,

waterbodies in this region are experiencing eutrophication and water overallocation [43, 52–

54], partly because of a lack of public connection with local aquatic ecosystems [55]. For exam-

ple, this disconnect has led to a lack of public will to implement wastewater treatment mea-

sures that could decrease delivery of bioavailable nutrients to Utah Lake [56, 57] and even the

consideration of a radical reengineering of the lake, including large artificial islands [58, 59].

Second, the Utah Lake watershed is nearly 8,000 km2, making traditional synoptic sampling

impractical and expensive. By collaborating with local nonscientists, we were able to sample

nearly 200 locations throughout the watershed within a few hours, reducing variability from

temporal changes in water flow and chemistry [27, 60]. We focused on three major questions:

1. What are the primary sources of carbon and nutrients in the Utah Lake Watershed, 2. How

much solute retention or release is there in the surface water network, and 3. What are the gen-

eral patterns of solute chemistry in these semiarid river networks. Though we did not collect

quantitative data on the attitudinal effects of participating in the samplings, we hypothesized

that learning about and spending time in the diverse tributaries to Utah Lake would improve

public awareness and proclivity to address local environmental issues [16, 18, 61, 62]. Regard-

ing the ecohydrological issues surrounding Utah Lake, we hypothesized that the complex

human footprint and variable hydrology in this semiarid watershed would create low spatial

persistence of pollutant sources and high critical source area behavior with a few influential

areas disproportionately influencing water quality [29, 31, 33]. To test these hypotheses, we

analyzed volunteer-collected samples for a broad suite of physicochemical parameters, calcu-

lating the ecohydrological metrics we describe below.

Methods

The Utah Lake watershed

Utah Lake is one of the largest freshwater lakes in western North America, with a surface area

of 375 km2 and a natural watershed area of 7,640 km2 [54]. As a part of the Great Salt Lake

watershed, Utah Lake is a remnant of Lake Bonneville, which covered up to 51,000 km2 of

what is now Utah, Nevada, and Idaho until about 15,000 years ago [63–65]. The watershed

ranges from 1,368 to 3,586 MASL and is characterized by relatively pristine high-elevation

headwaters in the Wasatch Mountains—although mining, livestock grazing, rural subdivi-

sions, and ski resorts are present. Low elevation valleys have a mix of urban and suburban

development interspersed with irrigated agricultural land, with an overall human footprint of

up to 93% in the valley bottom. Utah has one of the fastest growing populations in the US [66],

and agricultural land is increasingly being converted for suburban development. Seven waste-

water treatment plants, serving approximately 600,000 people in the valley region, discharge

treated effluent into tributaries to the lake (S1 Fig).

In the watershed headwaters, the dominant geology is limestone and quartz [67]. The vege-

tation consists of mixed aspen, conifer, and maple forests at high elevations, transitioning to

scrub oak and sagebrush at lower elevations. The high-elevation hydrology is complex, includ-

ing gaining reaches (i.e., net flow of subsurface water into surface water flows) and losing

reaches (i.e., net flow into subsurface water), particularly in areas of karst conduits and collu-

vial materials [68]. At the base of the mountains, where rivers flow into Lake Bonneville

PLOS ONE Citizen science reveals unexpected solute patterns in semiarid river networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0255411 August 19, 2021 3 / 22

https://doi.org/10.1371/journal.pone.0255411


sediment deposits at the outer perimeter of the prehistoric lake, reaches become primarily los-

ing, and water transport occurs largely through shallow groundwater flowpaths [69]. Near the

lake, streams once again become gaining, mixing with new streams generated by natural and

artificial recharge that feeds many springs flowing into the lake [70, 71].

Sampling design

We classified the subwatersheds into one of four categories based on land use and hydro-

logic condition (Table 1): Agricultural unregulated (Spanish Fork River), Mixed dammed

(Provo River), Mountain urban (American Fork River and Hobble Creek), and Valley

tributaries (Benjamin Slough, Goshen Valley, Mill Race, and others). The Agricultural

unregulated subwatersheds have been slower to experience rapid population growth and

still remain mostly under agricultural uses. One subwatershed (Diamond Fork) receives

artificially diverted flow from the nearby Strawberry River, but for most of the Agricultural

unregulated subwatersheds, the in-stream hydrologic modifications are minimal. All the

categories have some degree of flow infrastructure (e.g., check dams, channelized reaches,

dikes, etc.), but Mixed dammed subwatersheds include two large reservoirs (capacities of

0.18 and 0.39 km3, respectively) that drastically alter the downstream hydrology. Land use

in Mixed dammed subwatersheds is a mixture of both agriculture and urban. Mountain

urban subwatersheds include high contrast land use and degree of impact, with mostly pris-

tine headwaters before entering highly developed land use and consequently modified

Table 1. Watershed characteristics for contributing areas to Utah Lake watersheds.

Category Area

(km2)

Mean Elevation

(MASL)

Mean specific discharge (L sec-

1 km-2)a
Forest (%)

b
Herbaceous

(%)c
Developed

(%)b
Impervious

(%)b
# of

SitesRiver name

Agricultural

unregulated

Spanish Fork 1725 2137 2.26 55.9 5.5 1.9 0.5 43

Mixed dammed

Provo 1774 2320 3.32 64.9 3.5 5.5 1.1 112

Mountain urban

American Fork 160 2493 1.44 69.7 3.5 3.9 1.3 25

Hobble Creek 298 2158 2.59 58.4 7.5 2.1 0.6 22

Valley tributaries

Mill Race 47 1899 27.8 47.1 2.9 41 23 6

Dry Creek 111 2048 0.32 40.5 7.7 20 7.0 4

Goshen Valley 1355 1844 - 33.5 7.4 4.5 0.8 7

Benjamin Slough 326 1771 4.40 37.6 7.0 10 3.6 23

Other 906 - - - - - - 12

West desert -

Cedar Valley 665 1664 - 18.4 13 1.0 0.4

Tickville Gulch 157 1957 - 44.8 9.2 3.6 1.4

Lake Mountains 116 1631 - 18.5 8.1 5.8 2.2

Utah Lake (total) 7640 1990 2.16 43.8 6.2 10 2.1

Subwatersheds were delineated using the application USGS StreamStats. Where categories represent multiple subwatersheds, statistics for the major contributors are

given.
aAverage annual discharge from 1980–2003 (PSOMAS 2007).
b2011 National Land Cover Database (NLCD).
c1992 NLCD.

https://doi.org/10.1371/journal.pone.0255411.t001
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stream channels at low elevations. Valley tributaries include the groundwater sourced

tributaries that originate near the lake as described above. These subwatersheds also include

return flow from agricultural water diversions, and effluent from wastewater treatment

plants and other industrial facilities. The Utah Lake watershed also includes the West desert

region (Cedar Valley, Tickville Gulch, and Lake Mountain), which has only small, remote

ephemeral springs that are largely inaccessible. These subwatersheds were excluded from

sampling because they are not connected to the lake via surface water.

We initially selected 500 sampling sites from the Ambient Water Quality Monitoring

System (AWQMS), a database curated by the Utah Division of Water Quality, and the Utah

State University Water Quality Extension citizen science program, Utah Water Watch. We

used a clustering technique by including sites just above and below a confluence to maxi-

mize watershed coverage and minimize travel distances. We consolidated the initial 500

sites to 270 by merging redundant locations and removing inaccessible sampling locations

(e.g., difficult terrain or private ownership) and sites with no surface flow even during

snowmelt. Nearly all remaining sites were publicly accessible, and for the few locations on

private property, we obtained verbal permission from landowners. We used the application

USGS StreamStats to delineate watersheds, calculate watershed areas (km2), and estimate

land use and land cover from the National Land Cover Database (NLCD) for 1992 and

2011. Land use was classified as forested, developed, impervious surface, or herbaceous

upland for each watershed.

Participatory science

The practice of involving nonprofessionals in research (i.e., participatory or citizen science)

has been extensively used in the natural and social sciences [16, 72, 73]. While there are trade-

offs to participatory approaches, including less control over data acquisition and costs for par-

ticipants, there can be substantial community and scientific benefits [73–75]. On the

community side, citizen science can create educational opportunities and foster trust between

researchers, regulators, policymakers, and the public [74, 76–78]. On the scientific side, citizen

science can provide opportunities and value for researchers, including enabling novel experi-

mental designs (e.g., the collection of hundreds of samples synchronously) and informing

research priorities by improving researchers’ awareness of local needs and policy priorities [10,

75, 76, 79].

We collaborated with an undergraduate course on watershed ecology to develop a multi-

year participatory science program. This program included 2 public lectures, 7 community

events (e.g., fairs, festivals, and educational evenings) where we made presentations or staffed

interactive booths, and 6 synoptic samplings. From the beginning of the project, we partnered

with existing water organizations, including the Provo River Watershed Council, Utah Water

Watch, the Utah Lake Commission, the Utah Division of Water Quality, and the Utah Valley

Earth Forum. These partnerships were pivotal in recruiting volunteers, designing the sam-

plings, and disseminating the results. We additionally advertised through social media (Face-

book, Twitter, and Instagram), email lists (including past participants), online videos, and

paper fliers for approximately one month before each of the six sampling events. These adver-

tisements targeted local university students, youth groups, environmental groups, and the

broader community. At the community events, we presented a model watershed (EnviroScape,

Herndon, VA) to demonstrate runoff and transport of pollutants represented by food coloring.

In all our interactions with the public, we emphasized the historical context of human-water

interactions in the watershed, the current ecological status of the lake system, and potential

policy and personal actions to improve the health of the lake.
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Sampling events

The synoptic sampling events were the central experiences for volunteers in the program. We

carried out six sampling events in 2018 and 2019, but due to COVID-19 and other delays, the

chemical analyses of the last three samplings have not yet been finalized. We report the results

of the 2018 March (Spring), July (Summer), and October (Fall) samplings in this paper. Volun-

teers were invited to sign up in advance for the sites they wanted to sample on the project web-

site (https://utahlakecollab.wixsite.com/utahlakecollab), choosing from an interactive online

map of the 270 locations. This planning process encouraged volunteers to explore the entire

watershed virtually before the event, looking at areas where they already had experiences and

imagining locations they had not yet visited.

To reduce variability from sampling error, we used careful training, simplification of proce-

dures, and replication of sampling (i.e., we asked multiple volunteers to collect samples from

the same site so we could quantify sampling error). Other citizen science studies have found

that when such precautions are taken, the benefit of using volunteers to collect large numbers

of samples outweighs the tradeoffs of this kind of approach [80–82]. On the days of the sam-

plings, we distributed informational flyers while volunteers waited to collect sampling kits and

directions to sites. The flyers described the sampling procedure and provided context about

water use and water pollution in the area (S2 Fig). Before distributing the sampling kits, we

trained each volunteer individually, showing them how to collect water samples safely and

reproducibly. We provided simple field sheets, where participants recorded site conditions

and bottle numbers. After completing the sampling, participants returned their samples and

datasheets to the distribution locations, where we performed quality control, noting samples

with incomplete data or other irregularities (e.g., broken filters, partially filled bottles).

Because this research involved nonprofessional volunteers, we consulted the Institutional

Review Board (IRB) at Brigham Young University (BYU), which oversees all research involv-

ing human subjects. We were informed that IRB approval was not needed because volunteers

were not the subject of the research (i.e., we did not collect information about their identities

or experiences). This limited our ability to quantitatively assess the community outcomes of

the research but made participation less burdensome and improved inclusivity, particularly

for members of the community unwilling to share personal information for philosophical or

political reasons.

Laboratory analyses

Samples were filtered in the field with pre-rinsed 0.45 μm cellulose acetate filters into 60 ml

high-density polyethylene bottles and immediately frozen or refrigerated until analysis (typi-

cally within 2 weeks of sampling). Anions (NO3
-, NO2

-, SO4
2-, Cl-, and PO4

3-) and cations

(NH4
+) were quantified by ion chromatography (Dionex Thermofisher HPIC). Soluble reac-

tive phosphorus was quantified colorimetrically using the ascorbic acid method [83], reported

hereafter as PO4
3- for simplicity. Dissolved organic carbon (DOC) and total dissolved nitrogen

(TDN) were quantified using a C/N auto-analyzer (Elementar, Langenselbold, Germany). Dis-

solved inorganic nitrogen (DIN) was calculated as the sum of NO3
-, NO2

-, and NH4
+ from the

ion chromatography.

Ecohydrological metrics and statistical analyses

We calculated three recently developed ecohydrological metrics that indicate solute dynamics:

spatial variance thresholds, subwatershed leverage, and spatial persistence [27, 29]. Spatial vari-

ance thresholds indicate the predominant spatial scale where solute delivery or removal is

occurring, analogous to the representative elemental area concept [84, 85]. For each of the
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main tributaries (Table 1), we plotted the scaled (subtracted the mean and divided by the stan-

dard deviation) concentration for each solute against subwatershed area. Changes in variance

with spatial scale can be caused by mixing of tributaries, in-stream processing, and changes in

terrestrial-aquatic linkages. We used the pruned exact linear time (PELT) method to test for

changes in variance, implemented in the changepoint package of R [86]. We hypothesized that

the variance would decrease with spatial scale, following observations from other river net-

works [29, 38].

We calculated subwatershed leverage by multiplying the difference in subwatershed and

watershed outlet nutrient concentrations with the ratio of subwatershed area to watershed out-

let area [27, 29]. Assuming similar specific discharge throughout the watershed, leverage indi-

cates the amount of flux at the outlet that can be explained by the contribution of each

subwatershed [29, 38]. Positive leverage indicates the watershed is a net sources of the given

solute and negative leverage indicates the watershed is a net sink. Very large leverage values

can occur—for example, well over 100%—because some material is retained or removed as the

water flows over and through the landscape before reaching the outlet. Thus, sites with large

leverage values (i.e., >100%) can be considered highly influential contributors to solute con-

centrations at the outlet. Recently, mean leverage values across subwatersheds have been used

to infer network-scale production or retention of solutes [27]. When the watershed leverage

mean is positive, this implies there has been nutrient removal within the surface water network

(i.e., there is more solute in the tributaries than can be accounted for at the outlet), whereas a

mean negative leverage value indicates production within the surface water network. Valley

tributaries subwatersheds were excluded from leverage analyses because they did not converge

within a network to a single outlet (i.e., many discharged directly into Utah Lake).

To assess the consistency of observed spatial patterns, we calculated spatial persistence with

Spearman’s rank correlation [23, 29]. This analysis calculates a correlation coefficient (ρ) of

solute concentrations ranked from highest to lowest for each category and solute, across each

pair of Seasons (i.e., Spring-Summer, Summer-Fall, and Spring-Fall). We graphed means and

ranges of ρ values and tested for the effects of Season and land use category on solute persis-

tence using ANOVA.

We also used parametric statistics to compare links between land use and land cover with

water chemistry for the main tributaries. For each solute, we tested for differences among

watersheds with Analysis of Variance (ANOVA). We tested for links between land use and

catchments characteristics with water chemistry using generalized least squares models. The

models used concentration of each select solute (PO4
3-, DIN, TDN, DOC, Cl-, and SO4

2-),

including season and land use (e.g., developed, impervious, forest, and herbaceous) as inde-

pendent variables. A second order Akaike Information Criterion (AICc) was calculated for

each possible subset model, then the subset model with the smallest AICc score was selected as

the final model (reported below).

We performed all statistical analyses in R, using the dplyr and ggplot2 packages [87–89].

We used ArcGIS Pro (ESRI) to map solute concentrations, using open-source base layers.

Sample concentrations, including geographic information, and code used in analysis are avail-

able at https://doi.org/10.4211/hs.85f3584dccb54afba5698ac615ff949a.

Results

In 2018 and 2019, our outreach efforts reached approximately 6,500 community members

directly. Across the first three sampling events (the ones reported in this paper), we had over

150 unique participants, with at least a third of participants attending more than one event.

Most participants sampled in small groups although some worked alone. Detailed
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demographic data was not collected for participants in this phase of the project, however most

attendees were estimated to be between 18 to 30 years old, with ages ranging from less than 1

over 80 years old. When informally asked about their experience, responses were overwhelm-

ingly positive, including statements like, “I had no idea there were so many beautiful streams

in Utah Valley,” and, “this opened my eyes to how much we depend on this water. It actually

comes from somewhere before my sink!”

Most sampling kits were used correctly (e.g., bottles filled with filtered sample), with <10%

of the samples rejected because of user error. Incomplete or illegible labeling was the most

common error, though there were a few instances of complete communication breakdown

(e.g., one bottle was returned filled with soil).

Solute concentrations

The spatial distribution of solute concentrations across the watershed is shown in Fig 1. This

map includes data for samples collected from Utah Lake, which were excluded from other

analyses. Point color corresponds with Utah’s numeric water quality standards for N and P

(N> 4 mg L-1 and P > 0.05 mg L-1) and the 25th and 75th percentile of measured concentra-

tions for other parameters. DOC concentration varied relatively evenly across the watershed,

while DIN, TDN, PO4
3-, SO4

2-, and Cl- concentrations were highest at sites near or on Utah

Lake (Tukey, p-adj.<0.001).

Solute concentrations were different across the three sampling seasons (Spring, Summer,

and Fall) through the year (ANOVA, F-stat = 5.896, p-value<0.01) and across categories

(ANOVA, F-stat = 96.055, p-value<0.0001) for all solutes (Fig 2 and S1 Table). Pairwise analy-

sis determined that solute concentrations in Spring were higher than Summer or Fall (Tukey,

p-adj. = 0.002), but also depended on land use category (ANOVA, F-stat = 4.34, p-

value<0.001). A pairwise analysis across all categories determined that DOC concentration

was higher in Summer than Fall or Spring (Tukey, p-adj<0.001), and TDN concentration was

higher in Fall than during Summer or Spring (Tukey, p-adj<0.05). All solute concentrations

were higher at Valley tributaries sites than the other three categories (p-adj.<0.001), and

Mountain urban were higher than Mixed dammed (p-adj = 0.005).

Regressions of solute concentration by Season and land use found that % impervious sur-

face was positively correlated with higher concentrations for all solutes except DOC (Table 2).

In regression models of TDN, DOC, and SO4
2-, backward exclusion criteria found that only

Season was significant. In regression models of SO4
2- and Cl-, backward exclusion criteria

found that only % herbaceous upland was significant. Correlation coefficients (R2) for the

models were between 0.11 and 0.25.

Leverage and spatial persistence

In general, scaled concentrations and leverage by watershed area for the different solutes did

not show a funnel shape that is typical of humid and temperate watersheds (Figs 3 and 4A)

[38]. Instead, many of the solutes exhibited hourglass shapes, with higher scaled concentration

and leverage at the largest subwatershed size. However, the funnel shape did occur for DIN

concentrations in the valley tributaries, which had particularly high leverage in the smaller

catchments (<100 km2). Variance thresholds (km2), calculated from the scaled concentration

data using the PELT method, are listed in S3 Table. Only two solutes (DOC and TDN) were

calculated to have a single changepoint: TDN, 0.78 km2, and DOC, 0.62 km2 (although DOC

concentrations showed no variance collapse). PELT calculated two variance thresholds for

both Cl- (3.69, 666.00) and SO4
2- (62.6, 666.0), each having one changepoint closer to the head-

waters and one nearer to the lake. DIN had three variance thresholds, all of which were
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Fig 1. Maps showing the concentration of solutes across the Utah Lake watershed. Samples were collected from the watershed (outlined in

black) and averaged across three citizen science synoptic sampling events. Point color represents numeric water quality standards for N and P
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relatively small subwatershed sizes (0.78, 14.3, 18.0). Six changepoints were calculated for

PO4
3- (0.23, 10.3, 10.9, 14.3, 18.0, 644), with five out of the six thresholds being found at small

subwatershed sizes. Occasional outliers (single points at mid-range and large watershed size)

may have had an oversized effect on the overall pattern.

Most subwatersheds exhibited moderate to low leverage (i.e., < ±25% leverage) on water-

shed outflow concentrations of Cl-, and SO4
2- (85, and 84% of watersheds respectively; Figs 4B

and 5 and S2 Table). DOC, N, and P dynamics were much more concentrated (i.e., showing a

critical source area behavior), with around two-thirds (59–69%) of watersheds having a mod-

erate to low effect on outflow concentrations and the remaining third controlling flux. There

were many more highly influential subwatersheds (i.e., >100% leverage) for TDN and PO4
3-

than for DOC, Cl-, and SO4
2-, in line with the expected pattern from discrete sources of N and

P in the watershed. Unexpectedly, there were very few highly influential subwatersheds for

DIN concentrations, potentially due to the very high relative flux of DIN at the watershed out-

let (i.e., large loads in subwatersheds still remain <100%). The number of subwatersheds that

values, or 25th and 75th percentile for others. Point size is scaled to concentration. Basemap source: USGS National Map and Earth Resources

Observation and Science Center.

https://doi.org/10.1371/journal.pone.0255411.g001

Fig 2. Scaled concentration of solutes in Utah Lake subwatersheds. Samples were collected during synoptic sampling events in three seasons (SPR = Spring,

SUM = Summer, FAL = Fall) in watersheds with different land use categories (Agricultural unregulated, Mixed dammed, Mountain urban, and Valley tributaries).

Boxplots represent the 25th, 50th, and 75th percentiles, points within 1.5 times the interquartile range, and points beyond. The notches represent the 95% confidence

interval of the median (non-overlapping notches suggest statistically significant differences between populations).

https://doi.org/10.1371/journal.pone.0255411.g002
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were highly influential (i.e., >100% leverage) ranged from 11–16% for TDN and PO4
3-, 8% for

DOC, and only 1–2% for DIN, Cl-, and SO4
2-.

Mean leverage values for each solute and subwatershed category further illustrated the

dynamic behavior of N and P in the spring and summer in comparison with DOC, Cl-, and

SO4
2- (Fig 5). For example, TDN exhibited a strong removal signal (mean leverage >0) for all

categories in the spring and summer, with means closer to 0 indicating a conservative trans-

port (0 net production or removal) in the fall. DIN exhibited a weak production signal in all

categories and seasons. PO4
3- varied considerably by category and season. In contrast, Cl- and

SO4
2- maintained consistent neutral mass balances across category and season. DOC switched

from a net source to a sink from spring to summer in the Unregulated agricultural subwater-

sheds, but remained neutral for the Mountain urban subwatersheds, and maintained a mostly

consistent sink capacity in the Mixed dammed subwatersheds.

Table 2. Multiple linear regression models of solute concentration by land use and Season.

Solute Model variables R2

DOC Season��� + % forest��� + % impervious��� 0.192

PO4
3- % impervious��� 0.147

TDN Season��� + % impervious��� 0.231

DIN % impervious��� 0.245

Cl- % herbaceous� + % impervious��� 0.123

SO4
2- Season + % herbaceous��� + % impervious��� 0.115

Solute concentration (DOC, PO4
3-, TDN, DIN, Cl-, and SO4

2-) was regressed by land use (% forest, % developed, %

impervious surface, % herbaceous upland) and Season (Spring, Summer, and Fall) as independent variables. Final

models were selected as those with the smallest AICc score for the respective solute. Sign indicates correlation (+ =

positive,— = negative). Asterisks denote significant p-values:

’���’ < 0.001;

’��’ <0.01;

’�’ < 0.05; ’ ’ < 0.1.

https://doi.org/10.1371/journal.pone.0255411.t002

Fig 3. Theoretical diagram of spatial variability collapse (left) and spatial variability pattern observed in Utah Lake watershed (right).

https://doi.org/10.1371/journal.pone.0255411.g003
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Spatial persistence was specific to solute and land use (Fig 6 and S3 Table). DOC and PO4
3-

had lower spatial persistence (0–0.5) than the other solutes (0.3–1). Cl- and SO4
2- had the high-

est spatial persistence (>0.7). DIN and TDN had intermediate levels of persistence (0.5–0.7).

Persistence was highest overall at Mountain urban and lowest in Valley tributaries and Agri-

cultural unregulated subwatersheds, although the order of persistence as dependent on solute

(ANOVA, F-stat = 3.514, df = 30, p-value<0.001).

Discussion

Novel spatial hydrochemical patterns

Our study emphasizes the unique hydrochemistry of semiarid and mixed natural-urban

regions. In our results, PO4
3- was less spatially stable than other major ions, which was also the

Fig 4. Scaled solute concentration (a, left) and leverage (b, right) by watershed area for solutes of interest (DOC, PO4
3-, TDN, DIN, Cl-, and SO4

2-) for sites within

four land use and hydrologic categories of the Utah Lake watershed. Samples were collected on synoptic sampling events conducted in three seasons: Spring,

Summer, and Fall of 2018. Horizontal lines represent the means of the raw concentration data for that particular solute; vertical lines represent change points

detected by PELT analysis.

https://doi.org/10.1371/journal.pone.0255411.g004
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Fig 5. Distribution of leverage values show prevailing watershed production or removal for solutes across seasons.

Diamonds represent the mean leverage value for each subwatershed category. The horizontal black line at y = 0

represents a neutral mass balance. Diamonds that are above the black line indicate solute production and diamonds

below the black line indicate solute removal within the surface water network.

https://doi.org/10.1371/journal.pone.0255411.g005

Fig 6. Spatial persistence for solutes (DOC, PO43-, TDN, DIN, Cl-, and SO42-) for different categories of land use within the

Utah Lake watershed. Spatial persistence is calculated as a pairwise Spearman rank correlation coefficient (ρ) among synoptic

samplings from three seasons (Spring, Summer, and Fall). Points represent mean ρ for all pairwise comparisons within each

category, and bars give the range of values. The horizontal grey line marks ρ = 0.7; indicating that the majority of the spatial pattern

was retained between the two samplings.

https://doi.org/10.1371/journal.pone.0255411.g006

PLOS ONE Citizen science reveals unexpected solute patterns in semiarid river networks

PLOS ONE | https://doi.org/10.1371/journal.pone.0255411 August 19, 2021 13 / 22

https://doi.org/10.1371/journal.pone.0255411.g005
https://doi.org/10.1371/journal.pone.0255411.g006
https://doi.org/10.1371/journal.pone.0255411


case in temperate agricultural watersheds [23, 29] and in Arctic tundra watersheds [27]. The

low spatial persistence of PO4
3- compared with other solutes like Cl- suggests two non-exclu-

sive factors: one, sources other than natural geologic weathering introduce variability and two,

biological processes involving P uptake are variable. For example, changes in hydrological con-

nectivity across seasons and storm events can alter the delivery and chemical availability of

PO4
3- and other nutrients [90–93]. Likewise, P is often a limiting nutrient for some subwater-

sheds, introducing another source of variability as biological demand may exceed supply [36,

94, 95].

Valley tributaries stood out as having particularly low spatial persistence across all solutes

(Fig 6). We hypothesize that this is at least partially a function of the natural difference in sol-

ute concentrations between dilute snowmelt stream water and solute-rich groundwater, com-

bined with changes in source based on hydrologic conditions [69]. When discharge is high,

stream water diluted with snowmelt flows farther into the valleys before the change from los-

ing to gaining occurs. During low flow, the switching point of losing to gaining moves

upstream, creating large variability in solute concentrations observed at valley sites between

the mouth of the canyons and the lake.

Our analysis did not return a single spatial threshold for variance collapse in solute concen-

tration, unlike in other studies [50, 96–98]. For example, Northern Boreal watersheds tend to

have variance collapse in DOC at 15 km2 [40]. In Arctic tundra, the threshold for DOC and

NO3
− is similar (10–20 km2), and PO4

3- is slightly larger (25 km2) [27]. Mined Kentucky head-

waters have variance collapse in major anion and cation concentrations between 15 and 75

km2 [99]. DOC, PO4
3-, TDN, and DIN all had threshold values at very small subwatershed

areas (<1 km2). These low thresholds are likely influenced by point sources, such as wastewa-

ter effluent and field drains, which we reported as subwatershed areas of 0 km2. PO4
3-, Cl-, and

SO4
2- had thresholds at small and large subwatershed sizes. The hourglass pattern in spatial

variance may be also be impacted by the fact that the average subwatershed areas for the Valley

tributaries and Mountain urban were much smaller (40 and 32 km2, respectively) than the

Mixed dammed and Agriculture unregulated (200 and 281 km2, respectively). The lack of vari-

ance collapse in our study, like the low spatial persistence, may have been due to increased sol-

ute concentrations at groundwater-influenced sites near the lake [69]. Alternatively or

additionally, we may have detected differences in spatial variance at finer scales because of the

high-resolution sampling (i.e., such variability could exist in other areas but not have been

detected because of coarser spatial sampling).

Urban sources affect all solutes except DOC

This study identified hot spots of solutes of concern (Fig 1), and determined that position

within watershed is important in determining concentration dynamics [100]. PO4
3-, TDN,

DIN, Cl-, and SO4
2- concentrations were highest in Valley tributaries and other low-elevation

reaches, and solute removal or dilution occurred at mid-elevation reaches, indicated by the

map of concentrations (Fig 1) and narrowing of solute concentrations in mid-range subwa-

tershed sizes (Fig 4A). Impervious surfaces contributed to overall higher solute concentrations

(Table 2), but solute concentrations were more variable in reaches with agricultural activity

(Fig 6). This could be due to both the direct effect of impermeability on nutrient export (e.g.,

stormwater drainage) as well as a correlation between percent impermeability and the pres-

ence of wastewater effluent [34, 101]. We note that our linear models had low predictive capa-

bility (up to 25%), suggesting the need for additional explanatory metrics (e.g., geology and

updated land cover data). Decreases in solute concentrations at sites in the valley could be due

to losses to groundwater [69] or sorption of P to Lake Bonneville sediments [54].
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Valley tributaries were significant sources of N, a majority of which was DIN (Figs 2 and

4A). Multiple linear regression analyses showed that models of TDN and DIN had higher cor-

relation with % impervious surface than any of the other solutes (Table 2), and both categories

of N had lower persistence across Valley tributaries than the other subwatershed categories.

Valley tributaries, which had the highest percentage of developed land use (Table 1), had the

highest variability in N concentrations. Biological activity could also be responsible for high

variability and seasonal differences in N concentrations, similar to what was observed in other

mountainous western US watersheds [102].

This study confirms that urban point sources may disrupt spatial variability collapse. For

example, in highly urbanized watersheds in New York, NO3
− decreased in variability with

increased watershed size, but not SRP or NH4
+ [94]. We found DIN increased below wastewa-

ter treatment plants in Mixed dammed and Mountain urban watersheds, although in Mixed

dammed subwatersheds, DIN is subsequently diluted and/or removed at downstream sites

(Fig 1). PO4
3- concentration exceeded State of Utah numeric criteria for nutrient pollution

throughout all subwatershed categories and sizes, suggesting that point and non-point sources

(e.g., stormwater, agricultural water, and natural geological deposits) contribute to elevated P

in local streams.

Citizen science

In this study, we provided the opportunity for thousands of local citizens to learn more about

point and non-point sources of water pollution in a deep and meaningful way [18]. This

engagement has the possibility of creating public support for efforts to address water quality in

the Utah Lake watershed [103]. Future directions of this work include using educational

research tools to quantify the impact of participation on knowledge, attitude, and behavior.

This study demonstrates that citizen scientists can help professional researchers accomplish

study methodologies that are otherwise prohibitive. This has the dual benefits of extending

capacity for scientific observation, and fundamentally changing public awareness and mental-

ity. Both benefits subsequently influence how water resources are managed [61]. In this sense,

participatory water quality monitoring is not only a means of increasing understanding of how

water and nutrients propagate through watersheds; it is a mechanism to improve water quality

itself and encourage sustainable stewardship [79, 80].

Conclusion

Our results demonstrate the high spatial and temporal variability of PO4
3- within this water-

shed. However, at intermediate subwatershed sizes, PO4
3- removal or dilution occurred (Fig

4A). Point sources and groundwater around the lake contributed N in the form of DIN, and,

like PO4
3-, decreased in concentration in mid-range subwatershed size. In addition to high sol-

ute concentrations, Valley tributaries had low spatial persistence, indicating temporally

dynamic changes in sources and sinks of solutes. Even though there are inputs from natural (e.

g, geology) and anthropogenic (e.g., mining and grazing) sources that contribute to variability

in solute concentrations in the headwaters, the variability decreases at intermediate watershed

sizes as these diverse headwaters mix. It is at the highly impacted, urban reaches (Valley

tributaries and subwatershed sites >500 km2 that normal solute behavior is affected to the

degree that variability unexpectedly increases.

The Utah Lake watershed is fundamentally different in network-scale hydrochemistry than

previously described temperate, urban, and Arctic watersheds, due to the unique hydrology

and human impacts, especially in the lower reaches of the watershed. We encourage including

more semiarid regions, specifically endorheic basins, in hydrologic studies because
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understanding their distinctive hydrologic characteristics is critical to preserving these unique

ecosystems, many of which are threatened by climate change and human development [43].
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