
1. Introduction
Collaborative research and long-term monitoring of environmental processes in catchments are generating a high 
volume and variety of data of increasing velocity and veracity (Demchenko et al., 2013; Reichstein et al., 2019), 
holding the potential to characterize complexity across scales and refine hypotheses on catchment-scale ecosys-
tem response to environmental change. Especially with the advent of new technology such as sensors, lidar, and 
satellite imagery, we are amassing large amounts of data that capture spatially and temporally variable properties, 
patterns and processes characterizing the Earth system. Continental-scale data sets of catchment attributes have 
been compiled to facilitate investigations, such as the Catchment Attributes and MEteorology for Large-sample 
Studies (CAMELS) data set (Addor et al., 2017; Newman et al., 2015). Similarly, continental scale water quality 
databases are becoming available such as a data set for German catchments (Musolff, 2020) and a newly assem-
bled relational database for CAMELs catchments (Sterle et al., 2022).

The sheer volume of data, and the considerable variance in data types and temporal and spatial resolution, present 
a challenge for data analysis using traditional statistical methods (Demchenko et al., 2013). Often parametric and 
frequentist methods are not robust to conditions that are common in large data sets, including occurrences of 
missing data, censored data, mixed data types (continuous, nominal, ordinal) or distribution types (e.g., Gaussian, 
log-Normal, gamma, Poisson). Null-hypothesis significance testing applied to increasing numbers of observa-
tions is also challenged by decreasing p values (Lin et al., 2013). Moreover, in complex systems, multivariate 
complexities arise that are not well captured by frequentist statistical methods. Such multivariate complexity may 
include at least two phenomena: factor interactions and heterogeneity (Hanley, Rizzo, Buzas, & Eppstein, 2020; 
Urbanowicz et al., 2013). Here we use the term “factor interactions” to refer to a condition when a combination 
of variables may interact, synergistically or adversely, to result in an effect that neither variable would cause 
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independently to the same degree. An example of factor interactions from the field of medicine would be when 
a cancer outcome does not manifest unless there occurs a combination of risk factors (e.g., a genetic predispo-
sition and environmental stressor). Similarly, in catchment science, we are seeking to identify combinations of 
factors (e.g., catchment attributes) associated with a particular outcome (e.g., constituent response in streams), 
but which individually may have little or no influence. Thus, we are searching for combinations of factors joined 
by logical AND operators. “Heterogeneity” is a related property of complex systems, whereby independent 
sets of variables (some possibly with factor interactions) result in a similar outcome (Hanley, Rizzo, Stevens, 
et al., 2020; Urbanowicz et al., 2013). In practice, heterogeneity is defined by factors and/or conjunctive clauses 
joined by logical OR operators, and thus we may require multiple models to comprehensively predict a given 
outcome (Hanley, Rizzo, Stevens, et al., 2020). In the water resources and ecological fields, heterogeneity is more 
commonly labeled as “equifinality,” to describe a given outcome or response variable (e.g., water quality condi-
tion) that may result independently from different combinations of stochastically generated explanatory variables 
(Beven, 1993). Therefore, we will use the term, equifinality, for the remainder of this paper.

Identifying these factor interactions in catchment science is challenging because many parametric statistical 
methods are designed to identify only a single best model. In addition, despite painstaking efforts to reduce the 
number of explanatory variables, the search space that results when all factors are combined with their possible 
ranges of values quickly becomes larger than is possible to exhaustively search with most statistical techniques 
and today's computational power. As a result, the aim is to find the most parsimonious model (i.e., model that 
uses the fewest factors to explain an outcome). Another computational challenge encountered when attempting to 
increase the statistical power of traditional multivariate models is that ordinal and continuous-valued factors often 
need to be reduced (e.g., binned a priori by domain experts). This data reduction often adds bias and obfuscates 
important relationships between factors and the outcome class (Bustamante et al., 2014; Murray et al., 2012).

Machine-learning tools hold promise for the simultaneous detection (and characterization) of factor interactions 
and equifinality that has posed a challenge for more traditional statistical methods. Machine-learning tools are 
increasingly used for dimension reduction, trend identification, and feature extraction in Critical Zone science 
(Reichstein et al., 2019; Shen et al., 2018), yet factor interactions and equifinality have been less studied. Because 
equifinality is a characteristic of many complex systems, not just catchments or ecosystems, it can be valuable to 
look to other disciplines for their applications of new machine-learning approaches. Some studies from the medi-
cal fields have employed Random Forest (RF) approaches to examine data sets for equifinality (e.g.,Goldstein 
& Rigdon, 2019). Yet, other studies have identified that RFs struggle to identify equifinality (Hanley, Rizzo, 
Buzas, & Eppstein, 2020). The authors have developed an age-layered, tandem evolutionary algorithm (EA) that 
has successfully detected factor interactions and equifinality when applied to large data sets for original applica-
tions in epidemiology (Hanley, Rizzo, Buzas, & Eppstein, 2020). This machine-learning method is well suited 
to very large data sets where logistic regression methods can fail to exhaustively search all factor combinations 
and identify factor interactions (Anderson et al., 2020). Following validation on synthetic benchmark data sets 
that incorporated equifinality (Hanley, Rizzo, Buzas, & Eppstein, 2020), the EA was applied to mine data from a 
large socioeconomic survey aimed at identifying the drivers of household infestation with an insect that transmits 
Chagas disease, a mortal condition if left untreated (Hanley, Rizzo, Stevens, et al., 2020). The EA successfully 
parsed factor interactions and equifinality in variables that led to an increased risk of Chagas disease transmission 
(Hanley, Rizzo, Stevens, et al., 2020). Motivated by this early success, the algorithm has since been applied in 
the engineering fields to define equifinality in catchment-scale and reach-scale attributes associated with bridge 
damage outcomes in an extreme Vermont flood event (Anderson et al., 2020). Our intention in this current work 
is to introduce the Tandem EA in the water resources and ecology domains and apply it to a lesser studied aspect 
of large-scale patterns of the continental US (CONUS), that is, to extract factors and examine factor interactions 
and possible equifinality in the linkage between catchment-scale attributes and water chemistry outcomes, facil-
itated by the availability of the new CAMELS-Chem data set (Sterle et al., 2022).

As a test case, we focus on the connection between catchment attributes and mean dissolved organic carbon 
(DOC) in streams. DOC transported by rivers constitutes an important carbon (C) flux in the global C cycle 
(Aufdenkampe et al., 2011; Perdrial et al., 2014; Schlesinger & Melack, 1981) where increases in stream DOC 
potentially contribute to rising atmospheric CO2 levels and threaten water quality (Butman & Raymond, 2011; 
Doctor et al., 2008; Öquist et al., 2014, 2009; Raymond et al., 2013). Thus, DOC originating from forested head-
water catchments is monitored across the globe (MacDonald & Coe, 2007). For example, investigations of DOC 
have connected temporal dynamics in forested streams across the northern hemisphere (Monteith et al., 2007; 
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Porcal et al., 2009) to a number of drivers, including changing temperature or hydroclimatic conditions (Eimers 
et al., 2008; Freeman et al., 2001; Lepistö et al., 2008; Worrall & Burt, 2007), changes in deposition (De Wit 
et al., 2007; Evans & Monteith, 2001; Findlay, 2005; Hruška et al., 2009; Monteith et al., 2007), changes in the 
ionic strength or redox conditions in soils (Knorr, 2013; Steele & Aitkenhead-Peterson, 2012), and changes in 
vegetation cover (Finstad et al., 2016) or land management practices (Yallop & Clutterbuck, 2009). One study 
began to connect catchment attributes using CAMELS-Chem to the directionality of DOC trends in streams in the 
NE US (Adler et al., 2021), and while variability was high, catchment attributes seemed to partially impact direc-
tionality of DOC trends. However, before exploring more temporal patterns, we believe establishing the connec-
tion of catchment attributes to mean DOC concentration in streams is helpful as a baseline against which further 
studies can investigate for potential shifts in these dynamics. We therefore apply machine learning to investigate 
linkages between catchment attributes and mean DOC concentrations. Specifically, we ask: Can our novel EA 
identify combinations of catchment attributes that interact to result in spatial patterns of DOC response? Is a 
similar stream DOC response linked to different combinations of catchment attributes at the continental scale, 
indicating equifinality?

2. Methods
2.1. Study Area

Our study area comprises the contiguous United States (CONUS) and relies upon the CAMELS data set (Addor 
et al., 2017; Newman et al., 2015) compiled for 671 catchments of the US Geological Survey (USGS) National 
Water Information System (NWIS) (Figure  1a). These are minimally disturbed catchments filtered from the 
Hydro-Climatic Data Network (Lins, 2012) and represent a full range of ecoregions (Omernik, 1987). From the 
CAMELS catchment attributes that span categories of topography, climatic indices, hydrological signatures, land 
cover characteristics, soil characteristics, and geological characteristics, we selected 54 catchment attributes with 
a possible relationship to riverine DOC export (Table S1 in Supporting Information S1). For clarity, we have 
retained the same variable abbreviations used in Addor et al. (2017).

2.2. Site Selection and Data Harvesting

We further controlled for land cover by sub-setting these sites to 449 catchments with forest cover greater than 
50% of the catchment area (Figure 1a). To complement the CAMELS data set, we harvested available water 
quality data from the USGS NWIS (n = 593) (Sterle et al., 2022). The sampling period ranged from water years 
1898 through 2018 comprising 2,695,401 unique records. We summarized mean concentration data and number 
of observations for pH, temperature, and DOC (Figure 1b).

2.3. Site Clustering

To generate categorical outcome classes required by the Tandem EA, we clustered our CAMELS sites using two 
approaches and tested for factor interactions and equifinality in catchment attributes linked to these catchment 
subgroupings. We first defined subgroupings of catchments based on the 54 catchment attributes (Table S1 
in Supporting Information S1) relying on hierarchical agglomerative clustering. We clustered all 449 forested 
catchment sites into groups with similar hydrologic, geological, topographic and vegetative conditions that have 

Figure 1. Original Catchment Attributes and MEteorology for Large-sample Studies (CAMELS) sites (n = 671) reduced to (a) n = 449 catchments with forest cover 
greater than 50% (noted in green); (b) number of available dissolved organic carbon (DOC) observations at 134 of these stations is denoted by a symbol size equal to the 
square root (x)/10. See also Figure S1 in Supporting Information S1.
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a potential relationship to stream DOC efflux. Clustering was performed using the nonparametric hierarchical 
agglomerative clustering method with Ward's linkage criterion (Ward, 1963). Values were imputed for a very 
few observations with missing data (i.e., root_depth-50 (4.7%), root_depth_99 (4.7%), geol_porosity (0.2%)). 
Catchment-attribute values were standardized prior to analysis by subtracting the mean and dividing by the stand-
ard deviation. The number of clusters (k) was chosen based on the break-point in the plot of cluster-separation 
distance and cluster number (i.e., as distance between clusters became marginal with an increase in cluster 
number). Hierarchical clustering was performed using JMP software (JMP, 2019). In a second approach, we 
defined catchment subgroupings based on mean DOC concentration. For the subset of CAMELS sites where ≥3 
observations of DOC were available (n = 91; Figure S1 in Supporting Information S1), each site was identified 
as having high or low mean DOC concentration using a Jenks natural breaks classification (Jenks, 1967) applied 
to log-transformed data. Analysis and plotting were performed using the R programming language (R Core 
Team, 2019) and the “BAMMtools” package (Rabosky et al., 2014). For each approach, we then used the labeled 
clusters as outcome classes in our factor-selection algorithm to search the multidimensional data space and select 
catchment attributes that were most strongly correlated with the outcome classes.

2.4. Factor Selection

To identify factors (i.e., most important catchment attributes) associated with a target outcome (i.e., cluster iden-
tity or high/low DOC concentration), we used a new, tandem EA with particular advantages for factor selection 
in large observational data sets of complex systems (Hanley, Rizzo, Buzas, & Eppstein, 2020). Details of the 
algorithm and its validation on benchmark data sets are provided in Hanley, Rizzo, Buzas, and Eppstein (2020). 
The motivation for using the tandem EA might be similar to a logistic regression application, in that we can model 
the probability that catchments with certain attributes belong to a given outcome class. Both methods can model 
attribute linkages to binary outcome classes (e.g., high or low mean DOC concentration) or to multiple outcome 
classes as long as they are categorical (e.g., cluster assignment); this latter application would be analogous to the 
multinomial generalization of logistic regression. However, the EA has several advantages over logistic regres-
sion that we exploit in applying factor selection to our CAMELs-Chem data set. First, the EA can be applied 
to nonparametric data and is robust to varying data types (nominal, ordinal, continuous), skewed distributions, 
bounded data (e.g., proportions that are bounded between values of 0 and 1 such as the percent organic fraction 
variable in Table S1 in Supporting Information S1), censored data (e.g., water quality data that have a minimum 
or maximum reporting limit), and missing values (Anderson et al., 2020; Hanley, Rizzo, Stevens, et al., 2020). 
The EA is also suitable for exploring data where the number of observations in each target class (or cluster) is 
unequal (Hanley, Rizzo, Buzas, & Eppstein, 2020).

A second advantage of the tandem EA is that it finds interactions between multiple variables (e.g., catchment 
attributes) that may result from either additive processes or factor interactions. In two stages, the algorithm 
identifies and archives two types of clauses that are below a given threshold. First, a conjunctive clause (CC) is 
a combination of variables that may or may not be correlated and somehow interact to produce an outcome; this 
sequence of variables is joined by the word “AND.” For example, occurrence of a high-magnitude flood (i.e., 
the outcome) may be associated with catchment-scale attributes such as steep slopes AND shallow soils AND 
intense rainfall. A CC is often multi-order (i.e., comprises two or more variables) but can also be first-order (i.e., 
univariate). The previous example would be considered a third-order CC. Another type of clause identified in 
the second stage of the tandem EA consists of a sequence of CCs that are linked with a logical “OR” statement. 
This construct is formally known as a disjunctive normal form clause; for simplicity, we will refer to this as a 
disjunctive clause (DC). DCs are multi-order, while the CCs comprising a DC can themselves range from first-to 
multi-order. DCs are a particular strength of this novel algorithm, as their identification suggests equifinality 
in data sets, where the same outcome class may result from different combinations of variables. For example, 
a high-magnitude flood may result from: (high antecedent soil moisture + rainfall) OR (steep slopes + shallow 
soils + intense rainfall) OR (thick snow pack + high temperatures). Thus, the EA identifies sets of multivariate 
interactions (CCs) with a high probability of being associated with an outcome class. In this respect, there are 
multiple solutions with varying degrees of precision, sensitivity and specificity, making the tandem EA a very 
appropriate tool for complex systems to identify suites of independent predictor variables (e.g., factors) for each 
class outcome, especially where equifinality may exist (Hanley, Rizzo, Stevens, et al., 2020).

A third advantage of the tandem EA, is that it not only extracts factors significantly associated with given outcome 
classes, but also identifies the specific value ranges associated with those factors (Anderson et al., 2020; Hanley, 
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Rizzo, Buzas, & Eppstein, 2020). In the above hypothetical example of a CC linked to high-magnitude floods, the 
EA will evolve a specific value range based on the input observations: (catchment slope [2.3, 11%] + soil depth 
[0.1, 1.3 m] + rainfall intensity [7.6, 43 mm/hr]). In contrast, a low outcome class for flood magnitude could 
be associated with different variable ranges: (catchment slope [0.01, 2.2%] + soil depth [1.4, 4.8 m] + rainfall 
intensity [1, 7.6 mm/hr]).

2.4.1. Evolutionary Algorithm

The inputs to the EA consist of an n × p array where n represents the number of observations and p is the number 
of variables. The associated outcome class for these observation data must be categorical and the number of 
target outcome classes, k, must be provided to the algorithm. We can use continuous data as an outcome provided 
that we first bin the data into meaningful ranges or categories. The EA operates as a sort of binary classifier for 
each of k user-defined outcome classes, and the algorithm-assigned class outcomes are then compared to the 
expert-assigned labels to examine the rate of true positives. A binary classifier generates four possible outcomes 
(Figure 2a). A true positive occurs when the algorithm predicts a positive outcome class and the actual value is 
also positive. However, when the actual value is negative, a positive prediction would be labeled false positive. 
When the actual value is negative, and the prediction is negative, it is termed a true negative; a negative prediction 
when the actual value is positive results in a false negative.

For each outcome class, a graphical plot is generated of evolved clauses based on their precision versus sensi-
tivity. Precision (also called positive predictive value) is a ratio of true positives to the sum of true and false 
positives, expressed as a percentage. For example, in our case of mean DOC outcome classes, a positive outcome 
would be defined when a given catchment actually exhibits a high mean DOC concentration and the EA correctly 
predicts high DOC based on a single factor or combination of factors. Sensitivity (also known as true positive 
rate) is a ratio of true positives to the sum of true positives and false negatives. An EA outcome that correctly 
identifies a high proportion of actual positives will have a high true positive rate (or high “recall,” to use a term 
from the machine-learning disciplines). We will use the term “sensitivity,” consistent with language most often 
used in the medical disciplines. The diagnostic plot (Figure 2b) is a graphical representation of the trade-offs 
between precision and sensitivity of the EA to predict a given clause's association with a given outcome class. 
Many solutions are possible, and the best solutions will occupy the upper-right-hand corner of this plot, where 
both precision and sensitivity are maximized. We avoid those solutions that are positioned mid-way along the 
top or right axes of the plot. An outcome at 100% precision would mean that we have successfully minimized 
Type I errors (i.e., a low occurrence of false positives), but this outcome in the absence of high sensitivity could 
also mean that we have overfit our data. An outcome at 100% sensitivity would mean that we have successfully 
minimized Type II errors (i.e., a low occurrence of false negatives), but we would sacrifice precision of the test, 
since we would fail to identify some of the true positives. Instead, we focus on unique CC and DC solutions that 
occupy the “knee” point along the nondominated pareto front (Das, 1999). In our application, this knee represents 
the best compromise solution between precision and sensitivity and occupies the region closest to the upper 
right corner of Figure 2b. By reviewing the individual confusion matrices for those CCs and DCs, we then select 

Figure 2. (a) Confusion matrix of binary predictions for each target class. The goal is to maximize the number of true positives (TPs) and true negatives (TNs), while 
simultaneously minimizing the number of false negatives (FNs) and false positives (FPs). (b) Hypothetical plot of evolved clauses and their precision versus sensitivity.
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clauses that maximize the true positive rate, while simultaneously minimizing the occurrence of false positives 
and false negatives. Effectively, this process selects for a clause with maximum specificity—that is, correctly 
identifying as negative a large proportion of those actual negatives. A rule or rule set (CC or DC) with both high 
sensitivity and high specificity can be described as highly credible.

As the EA evolves, it only retains (i.e., archives) a subset of plausible combinations that exceed a user-specified 
fitness threshold, which represents a balance between the acceptance rates of false positives and false negatives. 
This threshold is somewhat analogous to a level of significance in frequentist statistics, except that the frequentist 
p-value is derived from a cumulative distribution function, while the tandem EA uses a hypergeometric proba-
bility mass function (PMF) to calculate fitness of a given CC or DC. We view this fitness score as a continuous 
form of p-value that moves beyond the dichotomous p-value of frequentist approaches (Wasserstein et al., 2019). 
The hypergeometric PMF is used as an objective (or fitness) function to quantify the likelihood that the observed 
association between the CC or DC (unique combination of variables) and the target outcome (e.g., High or Low 
DOC) is due to random chance. Fitness of a given clause is calculated using the hypergeometric PMF, as:

Fitness of clause =

⎡
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⎢
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where

•  NT is the total number of observations in the data set;
•  XT is the total number of those observations in the target outcome class, k;
•  nM is the total number of observations (i.e., variables) whose features match a given clause; and
•  xM is the number of observations that match the clause and are in target outcome class, k.

Thus, a very low fitness score indicates a very low probability that the clause has been identified purely by 
chance—in other words, there is a high probability that the clause is associated with the target outcome class.

2.4.2. Tandem EA Application

Practically speaking, the EA is implemented in two runs: a first run evolves and archives the CCs, while the 
second run evolves and archives DCs. Thus, we refer to the application as a tandem EA, and results for these two 
stages of the EA will be abbreviated as CCEA and DCEA, respectively. In addition to the fitness threshold, the 
CCEA employs a dynamically adjusted, order-specific feature sensitivity threshold test to prevent archiving of 
clauses with unwarranted complexity and thus helps to prevent overfitting of the data (Hanley, Rizzo, Buzas, & 
Eppstein, 2020).

Our research involved two separate applications of the tandem EA for factor selection. First, we applied the 
tandem EA to 54 catchment attributes inferred to have importance to DOC dynamics. Combinations of these 
catchment attributes were identified in CCs and DCs with high probability to be linked to one of several cluster 
assignments obtained when using hierarchical clustering of these same attributes for the 449 forested catchments. 
In our second application of the tandem EA, these same 54 catchment attributes were examined instead for their 
possible linkage to an outcome class of High or Low mean DOC concentration using Jenks natural breaks for 91 
catchments with sufficient (≥3) observations of DOC in stream water to calculate a mean value. Thus, we have 
applied the EA to cases of multiple categorical outcomes, analogous to multinomial logistic regression. Compu-
tation of the EA was performed in the Matlab programming language (MATLAB, 2018).

3. Results
3.1. Geographical Clustering of Catchments

Based on inputs of 54 catchment attributes (excluding DOC concentration data), the hierarchical agglomerative 
clustering algorithm identified four separate clusters of CAMELS sites. The clusters show a notable geographic 
distribution across the CONUS (Figure  3a) and are characterized by unique ranges of catchment attribute 
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variables (Figures 3b–3d) that can be described broadly as topographic, climatic, hydrologic, geologic and land 
cover factors (Table S1 and Figure S2 in Supporting Information S1).

The tandem EA results provided further insights into specific univariate and multivariate combinations of factors 
(e.g., specific topographic, climatic, and geologic variables) with highest significance in driving membership in a 
given cluster, particularly those (Clusters 1 and 2) that span multiple ecoregions. Table 1 provides a summary of 
the selected (best-fitness) clauses of all those archived by the CCEA and DCEA for each outcome class. For Clus-
ters 1 and 2, respectively, only 106 and 9 DCs passed the fitness threshold (see Section 2.4.2) and were archived 
by the DCEA. However, for Clusters 3 and 4, no DCs passed the fitness threshold, and therefore were no more 
informative than the CCs identified during stage 1 of the EA. Thus, catchment groupings in all four clusters were 
dominated by multivariate factor interactions.

3.1.1. Cluster 1 Outcome Class

Cluster 1 sites comprise coastal locations along the Atlantic Ocean and Gulf of Mexico and are characterized 
by specific topographic indices (very low elevation and mean slope) and climatic indices (near-zero fraction of 
precipitation falling as snow) (Figures 3b–3d). Tandem EA results served to reduce dimensionality of the multi-
ple catchment attributes and select factors (catchment variables and their specific value ranges) that were most 
important in driving Cluster 1 membership. The CC with the best fitness score (Table 1, Figure 4a, Figure S2a 
in Supporting Information S1) was a fourth-order rule that identified catchments receiving a near-zero fraction 
of precipitation as snow [frac_snow: 0, 0.1], exhibiting thick soil development [soil_depth_statsgo: 1.4, 1.5 m] 

Figure 3. Among the 449 study sites, (a) four geographically dispersed clusters were identified by Hierarchical Agglomerative Clustering on 54 catchment 
characteristics listed in Table S1 in Supporting Information S1, including factors illustrated in panels (b)–(h). Mean dissolved organic carbon (DOC) concentration in 
stream efflux (i) was not used as an input to clustering but demonstrates a consistent range across clusters.
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in overburden sediments with moderate to high sand fraction [sand_frac: 26, 86%], and higher than average 
mean porosity [geol_porosity: 0.16, 0.28]. This CC has a very good fitness score (i.e., large-magnitude negative 
number), meaning that the probability of this rule being identified merely by chance is very low.

DCs in general for this cluster had a lower precision and specificity than the CCs; note the position of the 
best-fitness DC (star symbol) in Figure  4a. Thus, many CCs would have greater power to predict Cluster 1 
membership than DCs, signifying that Cluster 1 membership is dominated by univariate to multivariate effects. 
The DC with best fitness and maximum specificity, was a second-order clause comprising a third-order CC and a 
second-order CC. The first rule identified catchments receiving a near-zero fraction of precipitation as snow [0 to 
0.1] falling on soils with moderate to high maximum water content [0.52, 1.05 m], and higher than average mean 
subsurface porosity [0.16, 0.28]. Alternatively, the second rule of this DC identified catchments with precipita-
tion that is evenly distributed throughout the year [p_seasonality: −0.2, 0.2] and low values for the differential 
between maximum and minimum monthly green vegetative fraction [gvf_diff: 0.1, 0.32]. Thus, the DC evolved 
factors and value ranges that were consistent with (and sometimes the same as) the above CC rule. However, in 
this case, the CC is a more parsimonious rule, and results in fewer false positives and false negatives than the 
best-fit DC.

In both the CCEA and DCEA, three outlier stations located along the Great Lakes in Michigan (USGS Stations 
#4045500, 4056500, and 4057510) were identified as false negatives. These three observations are less similar to 
other catchments in their cluster given that their dominant geologic class is carbonate sediment rocks, and they 
have a measurable (although low) fraction of precipitation falling as snow (0.3).

3.1.2. Cluster 2 Outcome Class

Cluster 2 sites include catchments located along the Appalachian Mountain range and upper mid-west, character-
ized by low-to-moderate mean slope and elevation (Figure 3). Compared to Cluster 1, these catchments receive 
a somewhat greater percentage of their annual precipitation as snow, given their generally higher elevation and 
latitude. The CC with best fitness and highest specificity for Cluster 2 (Table 1; Figure 4b, Figure S3c in Support-
ing Information S1) was a third-order rule that identified catchments with precipitation ranging from evenly 
distributed through the year to summer-dominated [p_seasonality: −0.2, 0.7] and a relatively wide range for mean 
high-flow duration [high_q_dur: 1, 5 days]. Dominantly, these catchments are underlain by carbonate and mixed 
sedimentary rocks or unconsolidated sediments. The DC for Cluster 2 that exhibited best fitness, while also mini-
mizing the number of false positives and negatives, was a second-order rule set comprising two univariate CCs 
(Figure S3d in Supporting Information S1). The first rule identified catchments covered by deciduous broadleaf 
and mixed forests, with a lesser occurrence of cropland/natural vegetation mosaic. The second rule specified 

Table 1 
Results of Tandem Evolutionary Algorithm (EA) for Various Outcome Classes

Outcome class No. archived clauses Selected clause and order Fitness Precision Sensitivity Specificity

Geographic clusters

 Cluster 1 1647 CCs CC 784 (4) −63.84 0.95 0.95 0.99

CC 1580 (2) −61.57 0.92 0.95 0.99

106 DCs DC 20 (2) −52.76 0.78 0.95 0.96

 Cluster 2 3305 CCs CC 783 (3) −111.9 0.99 0.96 0.99

9 DCs DC 1 (2) −86.7 0.93 0.93 0.93

 Cluster 3 2553 CCs CC 1483 (4) −66.29 0.79 0.92 0.94

 Cluster 4 2627 CCs CC 2156 (2) −62.09 0.96 0.86 0.99

Mean DOC concentration in stream water

 High DOC 544 DCs DC 79 (4) −19.3 0.97 0.93 0.98

449 CCs CC 349 (1) −15.0 0.87 0.90 0.93

 Low DOC 746 DCs DC 48 (3) −19.4 0.95 1.0 0.90

695 CCs CC 299 (1) −15.0 0.95 0.93 0.90

Note. Greater negative value for fitness score indicates a better fitness.
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a high differential between maximum and minimum average monthly leaf area index [gvf_diff: 0.35, 0.55], an 
indicator of deciduous vegetation.

3.1.3. Cluster 3 Outcome Class

Cluster 3 sites are located predominantly in the intermountain west, and are characterized by very high eleva-
tion, steep slopes, comparatively higher fractions of precipitation falling as snow (Figure  3), and less forest 
cover (Figure S2 in Supporting Information S1). The CC with the best fitness (Table 1; Figure 4c, Figure S3e in 
Supporting Information S1) was associated with catchments of moderate to high aridity index [0.6, 3], exhibit-
ing relatively shallow overburden depths to bedrock [Pelletier: 0.3, 2.5 m], relatively shallow rooting depths for 
the upper 50% of the root system [0.12, 0.19 m], and characterized by a variety of dominant land covers, most 

Figure 4. Archived results of the tandem evolutionary algorithm (EA) for each of the four geographical clusters as target outcome classes on a plot of precision 
versus sensitivity. Each symbol corresponds to an individual outcome of the tandem EA that represents a value range for a combination of catchment attributes (or 
in the univariate case—a single catchment attribute) with significant probability for driving the class outcome. Conjunctive clauses (CCs) evolved from the CCEA 
are presented as square symbols, and disjunctive clauses (DCs) evolved from the DCEA are circles, with color hues indicating increasing clause order. The black 
dashed contour lines represent intervals of equal fitness score with better fitness scores (more negative values) concentrated in the top right corner of the plot (see 
Section 2.4.1). The tandem EA has reduced dimensionality of the dataset (p = 54 attributes) to identify the combination of two to four catchment attributes that interact 
(synergistically or adversely) and are most significant in driving cluster membership. Geographic cluster membership is dominated by multivariate factor interactions, 
because many CCs outperform DCs.
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commonly evergreen needleleaf forest, grasslands, and woody savannas. Using this rule, three distal stations 
located in Maine and Minnesota (USGS #1013500, 1030500, and 5129115) were identified as false negatives by 
the CCEA, because they have much deeper overburden depths than the remaining sites (7, 19, 11 m, respectively). 
Relative to the remaining sites in the cluster, these three outlier stations also have slightly higher values for the 
differential between maximum and minimum monthly green vegetative fraction (gvf_diff and lai_diff), a lower 
snow fraction, lower elevation and mean slope, and lower aridity index.

3.1.4. Cluster 4 Outcome Class

In the Pacific Northwest, Cluster 4 sites are located along the Cascade and northern Coastal Range mountains at 
low to moderate elevations, with mean slopes in a range similar to catchments of Cluster 3, and snow fractions 
in a range similar to Cluster 2 (Figure 3). These catchments have comparatively higher mean daily precipitation 
(occurring dominantly in the winter months), and generally higher runoff ratios than catchments of other clusters 
(Figure 3). The CC with the best fitness for Cluster 4 (Table 1; Figure 4d, Figure S3f in Supporting Informa-
tion S1) identified catchments with high mean daily precipitation [3.7, 8.9 mm day −1] and dominant land cover of 
evergreen needleleaf forests (with minor occurrences of grasslands, mixed forests, and woody savannas).

3.2. Patterns in DOC Concentrations

Mean DOC concentration varied significantly across the CONUS ecoregions and our geographic clusters 
(Figure 5). The break point between High and Low mean DOC concentration identified by Jenks classifica-
tion was 4.6 mg/L. Sites with High DOC concentration (>4.6–58 mg/L) were generally located along coastal 
regions of the eastern CONUS and the Great Lakes, spanning Clusters 1 and 2, while Low DOC concentrations 
(0.8–4.6 mg/L) were noted for sites along the interior and the west coast, comprising most of Clusters 3 and 4, 
but also some Cluster 2 stations along the Appalachian Mountains.

Using these two outcome classes (High and Low DOC), the tandem EA identified predictive combinations of 
catchment-scale physical attributes (e.g., topography, geology, soils, land cover) and hydroclimatic variables with 
possible importance in driving DOC stream chemistry in our forested catchments. In contrast to the geographic 
cluster outcomes, the DCEA evolved better-fitness clauses than the CCEA for High and Low DOC outcomes 
(Table 1, Figure 6), indicating equifinality in the data set.

3.2.1. High Mean DOC Outcome Class

For the High DOC outcome class, two DCs (Figure S4b in Supporting Information S1) were co-located at the knee 
point (star symbol of Figure 6a), and had equivalent values of precision (96.6%) and sensitivity (93.3%). These 
two rule sets were composed of the same four univariate to second-order CCs, and they differed only in terms 
of the component CC for overburden depth having slightly different value ranges: (1) elev_mean [40 m, 90 m]; 
OR (2) frac_snow [0.2, 0.3] + p_mean [1.9 mm day −1, 3.3 mm day −1]; OR (3) high_precip_freq [23 days yr −1]; 
OR (4) soil_depth_pelletier [27.2 m, 44.2–44.6 m]. This soil_depth_pelletier catchment attribute expresses the 
average depth of unconsolidated materials over weathered bedrock to a maximum limit of assessment of 50 m and 
was developed on a global scale at a 30 arcsec grid (Pelletier et al., 2016) and compiled as the mean of all those 
∼1 km grid points that fell within each catchment (Addor et al., 2017).

Figure 5. Dissolved organic carbon (DOC) concentration at Catchment Attributes and MEteorology for Large-sample Studies (CAMELs) sites (n = 91) with ≥3 
observations, classified as Low (n = 61) or High (n = 30) using Jenks natural breaks classification on log10-transformed mean DOC values (a). For the subset of 
n = 133 sites with available data, mean DOC concentration was internally consistent by assigned cluster (b), where symbol size is graduated by the square root of the 
DOC concentration. Cluster 1 sites (n = 22) had the highest range and mean of DOC concentration.
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If we relied on any one of these component CCs, alone, to predict whether a catchment site had High DOC, they 
would have very high precision (90%–100%) but quite low sensitivity (27%–50%), because we would fail to accu-
rately classify between 15 and 22 of the 30 catchments in the High DOC class. Instead, taken collectively, these 
component CCs suggest equifinality as an important quality of the data set (i.e., high mean DOC concentrations 
can result from different factors or combinations of factors).

Overall, compared to the DCs, the CCs had worse fitness and thus less power to predict High DOC class outcome. 
The archived CCs were largely univariate in nature—identifying a single catchment attribute instead of a combi-
nation of multiple attributes (i.e., factor interactions) as a driver of the High DOC outcome class. Of all the 449 
archived CCs, the rule which had near-maximum precision (87.1%) and sensitivity (90%), while simultaneously 
minimizing false positives (4/91 = 4.4%) and false negatives (3/91 = 3.3%) was overburden thickness [soil_
depth_pelletier] with a value range from 5 to ≥50 m (Figure S4a in Supporting Information S1).

One catchment in Cluster 2 was identified as a false negative by the best-fitness CC for the High DOC outcome 
class (Figure S4a in Supporting Information S1; Castle Creek above Deerfield Reservoir near Hill City, SD; 
USGS Station # 06409000). Three DOC observations recorded at this site (1.2, 2.9, and 170 mg/L) included one 
possible outlier, which skewed the mean DOC value into the High category (58 mg/L DOC). These results flag 
this site as one that possibly does not belong to the class it was grouped into, and highlight the relatively low 
number of observations (n = 3) relied upon to classify this site as having High DOC mean concentration.

3.2.2. Low Mean DOC Outcome Class

Compared to the High DOC solutions, the Low DOC solutions had generally higher precision, and again the 
DCs exhibited better fitness than many of the CCs (Figure  6b). Archived DCEA results for the Low DOC 
outcome class included several second-to fourth-order DCs, each made up of first to second order CCs. Ten 
third-order DCs with equivalent fitness scores were co-located at the position indicated by the star symbol on 
the precision versus sensitivity plot (95% precision; 100% sensitivity; Figure 6b). These third-order rule sets 
were: (1) soil_depth_pelletier [0.6, 1.6 m]; OR (2) soil_depth_pelletier [1.1, 4.5 m]; OR (3) root_depth_50 [0.12, 
0.21 m] + dom_land_cover [Classes 2, 4, 5, 6, 7, 8]. Among the identified catchment-scale land cover classes, 
most of the 61 catchments in the Low DOC outcome class were characterized by forest variants, including decid-
uous broadleaf (n = 21), evergreen needleleaf (n = 16), and mixed forests (n = 11). The value ranges for rooting 
depth indicate that the top half of the vegetative root system lies on average between 0.12 and 0.21 m, reflecting 
somewhat more shallow-rooted vegetation in comparison to the full data set (Figure S2 in Supporting Informa-
tion S1). When two or more variables occur in a rule set, they are correlated to the outcome class but may or 

Figure 6. Archived results of the tandem evolutionary algorithm (EA) for each of the target outcome classes: (a) High [dissolved organic carbon (DOC)] (n = 30) and 
(b) Low [DOC] (n = 61) on a plot of precision versus sensitivity for (p = 54) catchment attributes. Conjunctive clauses (CCs) evolved from the CCEA are presented 
as square symbols, and the disjunctive clauses (DCs) evolved from the DCEA are plotted as circles, with color indicating clause order. The black dashed contour lines 
represent intervals of equal fitness score. For each outcome (High DOC, Low DOC), the DCs (stars) outperformed the CCs (plus sign), indicating that the same target 
outcome results from different predictive combinations of variables—a phenomenon known as equifinality.
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may not be correlated themselves. In this case, dom_land_cover and root_depth_50, are likely correlated in part 
because rooting depths were developed using a numerical function tied to land cover class (Addor et al., 2017).

The CC with the best fitness score (Table 1; “plus” sign in Figure 6b) was associated with an overburden thickness 
[soil_depth_pelletier] between 0.4 and 5.4 m, and had a precision of 95.0% and sensitivity of 93.4%. Seventeen 
of the eighteen lowest-fitness CCs were first-order clauses containing this same variable but slightly different 
value ranges. This rule had nearly as good a fitness score as the best-fit DC and could be considered a more 
parsimonious rule for prediction of Low DOC concentrations in stream water with only slightly sacrificed sensi-
tivity (Table 1). The above third-order DC provides more nuance to distinguish between Low DOC catchments 
in Cluster 2 versus those in Clusters 3 and 4. The same Castle Creek site was identified as a false positive by the 
best-fitness CC and DC for the Low DOC outcome class (Figures S3c and S3d in Supporting Information S1).

4. Discussion
4.1. Application of Tandem EA for Spatial Pattern Detection in DOC Concentration

We applied a new machine-learning algorithm on an integrative, CONUS-scale “big data” set (CAMELS-Chem) 
to illustrate data-driven approaches for pattern identification in catchment science. Specifically, we sought to 
identify factor interactions and equifinality in catchment attributes as drivers of mean DOC response in streams 
at the continental scale. We first used the tandem EA to reduce dimensionality of our data and identify key catch-
ment attributes at the CONUS scale that are associated with four geographical regions labeled by hierarchical 
clustering of topographic, geologic, hydrologic climatic and land cover variables (Figures 3 and 4). The four 
clusters are consistent with ecoregions of Herlihy et al. (2008) that were aggregated from Level III ecoregions 
(Omernik, 1987), and they mirror the four aggregated geographic regions analyzed for the National Wetland 
Condition Assessment (USEPA, 2015). In general, geographic clusters were characterized by multivariate factor 
interactions, but substantial equifinality was not identified.

On the other hand, the tandem EA resolved both factor interactions and equifinality at the CONUS scale in 
governing variables for streamflow chemistry emanating from these catchments, when DOC concentrations were 
clustered into high and low mean DOC outcome classes. High DOC mean concentrations (>4.6 m/L) were equal 
to or higher than the global mean of 5 mg/L (Berner & Berner, 2012), and were associated with two geographic 
clusters spanning widely variant climatic and vegetative conditions: Cluster 1 catchments located in the Coastal 
Plains of Southeastern US, and some of the Cluster 2 catchments located along the margins of the Great Lakes in 
the Upper Midwestern US. These findings confirmed that geography alone does not serve as a skillful predictor 
for DOC concentrations. Instead, four separate factors, or combinations of factors, made up the best-fit predictive 
model for High DOC evolved by the tandem EA (right side of Figure 7): (1) low mean elevation (<90 m; predom-
inantly Cluster 1 sites) OR (2) low to moderate values for mean daily precipitation and measurable (although 
low) annual snow fraction (Cluster 2 and select Cluster 1 and 3 sites) OR (3) a relatively high annual frequency 
(23 days) of high precipitation days (select Cluster 1 and 2 sites) OR (4) relatively thick overburden materials 
(>27 m; Cluster 1 and 2 sites). Multiple factors were also associated with the Low DOC outcome class (left side 
of Figure 7), including (i) very shallow overburden sediments (Cluster 3 and 4 sites) OR (ii) shallow overburden 
sediments (select Cluster 2 sites) OR (iii) shallow to moderate rooting depths in mixed deciduous broadleaf and 
evergreen needleleaf forests (Cluster 2, 3, and 4 sites). For complex systems exhibiting factor interactions and 
equifinality, these multiple models will more comprehensively predict a given outcome than traditional statisti-
cal approaches (Hanley, Rizzo, Stevens, et al., 2020). Furthermore, the tandem EA can extract patterns that are 
meaningful to a given outcome class, even when data on that outcome class are sparse—a condition that exists 
for many constituents of concern (Sterle et al., 2022). Our selection of DOC was particularly illustrative, since 
sufficient long-term records were available for only 91 of the 449 catchments included in this analysis. In this 
sense, sites with limited streamflow chemistry data may benefit from predictive models evolved relying on labe-
ling from other sites that have higher-frequency and longer-term records.

4.2. From Pattern to Process: Integrating Domain Knowledge

Fundamentally, data-driven approaches point us toward important factors and factor interactions, but domain 
knowledge is required to ascribe possible meaning to them (Goldstein et al., 2018) and refine hypotheses for 
further testing using process-based methods. Domain knowledge can be particularly helpful to examine and 

 19447973, 2023, 3, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2021W

R
030551, W

iley O
nline L

ibrary on [25/01/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

UNDERWOOD ET AL.

10.1029/2021WR030551

13 of 17

interpret other lesser-fitness rules or rule sets evolved by the tandem EA, to consider them as a proxy for the 
best-fit solution, and to interpret possible processes linked to the observed patterns. For example, a nearly 
equal-probability factor associated with High DOC was the first order CC of deep overburden thickness. This is 
not a contradiction of the best overall fitness DC but can be considered a consequence of, or covariant with, three 
of the four clauses comprising the DC. In other words, low elevation regions are predominantly located along 
coastal margins where sediments have accumulated. A regional climate that produces “wet when warm” condi-
tions leads to high weathering rates and productive vegetation (Perdrial et al., 2015; Rasmussen et al., 2007). 
Thus, overburden thickness is both an indicator variable of High DOC, but also an integrator variable of these 
meteorological, hydrologic and soil attributes. Factors correlated with the Low DOC concentrations of inter-
mountain west sites in Cluster three included: shallow overburden thickness (soil_depth_pelletier), associated 
with thin soil development (soil_depth_statsgo), high aridity, and shallow rooting depths. To develop overbur-
den thickness estimates on hillslopes, Pelletier et  al.  (2016) combined erosion rate estimates proportional to 
topographic curvature and inversely proportional to soil depth and soil production. The success of the Pelletier 
et al. overburden thickness estimate is perhaps due to its ability to resolve local (i.e., hillslope vs. upland) and 
regional (i.e., climate, geology, etc.) drivers of critical zone development.

These findings underscore the importance of overburden materials and their structural properties (thickness, 
porosity, permeability) in mediating hydrological and vegetation processes to govern DOC dynamics at the catch-
ment scale. While the goal of this study was not to provide an in-depth investigation of DOC dynamics across 
the CONUS, our results are in agreement with current process-based understanding of the balance between 
biogeochemical and hydrological drivers of DOC dynamics. At the catchment scale, DOC export into streams 
is typically controlled by the interaction of DOC production, consumption and hydrological transport that is 
conceptually summarized as ecosystem control points (Bernhardt et al., 2017). High DOC supply is associated 
with deeper soils on low slopes, and a greater potential for precipitation partitioned to slow and deep groundwater 
(Cluster 1 and some Cluster 2 catchments, Figure 7), and this expected increased residence time would suggest 
a more biogeochemically dominated DOC export regime. Low DOC supply, and episodic (flashy) hydrologic 
connectivity and transport are associated with a greater proportion of streamflow derived from fast-flow path-
ways and low DOC concentrations overall (Gnann et al., 2019). Similarly, in Cluster 4 (and some Cluster 2) 
catchments, a transport-dominated condition engendered by moderate to steep slopes but low hillslope curvature, 

Figure 7. Perceptual diagram of mean dissolved organic carbon (DOC) concentration patterns across the continental US 
(CONUS). Geographic clusters are arranged on a continuum from high (left) to low (right) elevation, and demonstrate 
increasing overburden thickness with decreasing elevation. Mean DOC concentration is lesser in high-elevation, high-slope 
catchments of hydrologically dominated Clusters 3 and 4, and greater in lower-elevation, low-slope catchments of 
biogeochemically dominated Clusters 2 and 1. The latter groups are also characterized by deeper overburden sediments and 
rooting depths, supporting more deciduous vegetation.
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likely are responsible for Low DOC concentrations, despite a moderate DOC production capacity—that is, high 
mean precipitation and mean duration precipitation, and moderate to high soil profile thickness (soil_depth_
statsgo) in those shallow overburden materials.

While our results largely conform to current understanding of continental-scale DOC patterns, this is actually an 
outcome that we believe may help to reinforce acceptance of the Tandem EA as a new tool with value for explora-
tory data analysis applied to less-characterized constituents, or less-studied contexts, such as temporal dynamics. 
Specifically, these results offer a baseline on the connection of catchment attributes and DOC concentrations in 
general, against which further studies can test which attributes increase ecosystem resilience/resistance against 
change.

4.3. Consideration of Uncertainty

To keep the focus on a relatively straightforward application of the novel tandem EA, and to offer a baseline 
analysis of the connection between DOC and catchment attributes, we have “controlled” for time-transgressive 
variations in DOC concentration, by aggregating the catchment signal (i.e., relying on an average DOC concen-
tration as the output class), and using annual-scale values for catchment attributes (Addor et al., 2017).

Our work focuses on illustrating a new exploratory data analysis technique capable of detecting equifinality and 
factor interactions, and does not explicitly address uncertainty of model inputs or outcome classes. Large-sample 
data sets, often derived from remote sensing sources, can be prone to observation errors (Addor et al., 2020). The 
CAMELS attributes used as inputs to our Tandem EA represent catchment-averaged values of various hydrologic, 
geologic, topographic, climatologic and land use variables that do not capture the catchment-specific variability 
in these properties (Addor et al., 2020, 2017). Uncertainty of these values may be considerable, particularly for 
subsurface geologic variables derived largely from remote sensing, but estimates of observational uncertainties 
were not supplied in the original data set. Under-representative sampling may also have biased classification of 
High and Low mean DOC concentration, used as outcome categories in our algorithm. Of the 449 catchments 
we clustered into geographic regions, only 91 contained monitoring records with three or more DOC observa-
tions; 67% of these 91 catchments had DOC records containing 10 or more observations; and 41% had 30 or 
more observations (Figure S1 in Supporting Information S1). Yet, notably, the EA flagged a station with sparse 
outcome data (N = 3) as a “false negative,” suggesting a degree of method robustness to sources of data uncer-
tainty (Section 3.2.1).

Admittedly, the above-described sources of uncertainty may have led to diminished power to detect factor impor-
tance or factor interactions. Yet, issues of observational uncertainty, sparse data, and imbalanced data sets, are 
common when dealing with large data sets and seeking to extract patterns across broad regions. In light of 
the limited financial and labor resources available to expand upon these monitoring data sets both in terms of 
spatial density, monitoring frequency, and record length, we were motivated to develop tools—like the Tandem 
EA—with greater robustness to these data limitations. A principal value of the Tandem EA is in exploratory data 
analysis to refine hypotheses for further testing at the regional or catchment scales, where explicit treatment of 
uncertainty can be incorporated in process-based models and/or data-driven models (e.g., Bayesian hierarchical 
models).

4.4. Future Work

The tandem EA is transferable to other settings or contexts. Catchments could be categorized in outcome classes 
for different constituents (e.g., suspended sediment, nitrogen, phosphorus) to explore driving factors for alternate 
catchment dynamics (weathering, nutrient cycling). The same tool could be applied to data collected at high 
temporal resolution (e.g., nutrient time series) to suggest possible hourly to seasonal scale drivers of nutrient 
dynamics, a focus of future research. Given the observed differences in climate stationarity across the CONUS 
(Hirsch, 2011) and the regional differences in projected trends (Hayhoe et al., 2007; IPCC, 2013), various regions 
may have been (and may continue to be) exposed to different magnitudes and directionality of hydrologic drivers. 
From our analysis, we might hypothesize that climatic shifts that continue to promote thick soils may lead to more 
concentrated stream water DOC in the long term (i.e., conditions that produce thick soils (DOC production) also 
lead to DOC transport). Future work could apply the same tandem EA approach to examine possible linkages 
between catchment attributes and temporal trends in DOC concentration. Insights from the current work are being 
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used to inform structure and parameterization of numerical models applied at the site scale at long-term moni-
toring sites that are representative of these clusters (e.g., CZOs, LTERs). We have identified select catchments 
representative of these clusters, where greater temporal and spatial resolution of time-series records are availa-
ble, to carry out process-based modeling of DOC dynamics aided by bench-scale soil experiments (e.g., Adler 
et al., 2021; Wen et al., 2020). These site-scale models are more computationally and representationally detailed 
(Larsen et al., 2014), and are being used to elicit processes important in DOC streamflow dynamics from forested 
headwater streams. Such complementary approaches, combining data-driven models and mechanistic models are 
better at addressing both “breadth” and “depth” of analysis to advance understanding of biogeophysical processes 
(Gupta et al., 2014).

5. Conclusions
A novel EA was applied to extract dominant factor interactions and equifinality associated with spatial patterns in 
stream DOC concentration at predominantly forested, long-term monitoring sites across the continental US. The 
tandem EA reduced dimensionality of our catchment attribute dataset to identify that the same outcome (High 
mean DOC concentration, >4.6 mg/L) is associated with different predictive combinations of factors, and their 
specific value ranges, including (1) low mean elevation, or (2) low to moderate mean daily precipitation with 
a measurable snow fraction, or (3) relatively high frequency of high-precipitation days, or (4) thick overburden 
materials. Multiple factors were also associated with the Low DOC outcome class, including (1) very shallow 
or (2) shallow overburden sediments or (3) shallow to moderate rooting depths in mixed deciduous broadleaf 
and evergreen needleleaf forests. For complex systems exhibiting such factor interactions and equifinality, these 
multiple models identified by the EA will more comprehensively predict a given outcome than traditional statis-
tical approaches (Hanley, Rizzo, Stevens, et al., 2020). Because thickness of overburden materials is a factor that 
may be considered a consequence of, or covariant with, the other identified factors, our findings underscore the 
importance of critical zone structure in mediating hydrological and biogeochemical processes to govern DOC 
dynamics at the catchment scale.

Exploratory analysis of big data at broad scales of the CONUS is more inclusive and embraces a fuller diver-
sity of catchment types than can be modeled using deterministic approaches, given the high-resource inten-
sity that such process-based models necessitate. Processes and governing factors important to DOC flux 
or concentration patterns at this continental scale may (or may not) be significant at a catchment or site 
scale. Nevertheless, using this data-driven approach, patterns emerge from big data that can be used to shape 
hypotheses for further study, or refine parameterization using process-based models at the catchment or site 
scale (Bergen et  al.,  2019). In turn, findings from a mechanistic approach within a unique catchment can 
be placed in a broader-scale context by relying on exploratory analysis of big data at the CONUS or global 
scale. Machine-learning approaches, and specifically the tandem EA, offer important advantages over tradi-
tional statistical approaches to identify factor interactions and equifinality that characterize complex systems 
(Anderson et al., 2020; Hanley, Rizzo, Stevens, et al., 2020). Such complex systems tools can be an important 
first step in the iterating inductive to deductive steps of a hybrid investigation (Bergen et al., 2019; Larsen 
et al., 2014; Reichstein et al., 2019).

Data Availability Statement
The data set of catchment attributes was extracted from the CAMELS data set available online (https://doi.
org/10.5065/D6G73C3Q), and select water chemistry parameters for forested CAMELS sites are provided in 
Sterle et al. (2022). Open-source Matlab code for the tandem EA is available at: https://www.mathworks.com/
matlabcentral/fileexchange/69950-cceaand-dnfea.
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