
1. Introduction
Oxygen (O2) is the quintessential electron acceptor and therefore drives biogeochemical cycling on Earth. Its 
availability within soil pores strongly modulates soil oxidation-reduction (redox) potential, thereby controlling 
which energy yielding soil biogeochemical reactions proceed (M. Hefting et al., 2004; Silver et al., 1999). For 
example, decreases in dissolved O2 and/or gas-phase soil pore O2 reduce redox potential, causing facultative and 
obligate anaerobic microorganisms to shift their energy-yielding respiration processes to utilize alternative elec-
tron acceptors. For example, the transformation of nitrate (NO3 −), a soluble form of N that is limiting to primary 
productivity in freshwater and marine ecosystems, to gaseous forms of N (N2O and N2) via denitrification, is a 
major N removal pathway (M. M. Hefting et al., 2003). This process can reduce N loading to water bodies, but 
it will not proceed if O2 is abundant. Further, the production of methane (i.e., methanogenesis) plays a key role 
in global C cycling and is completed by strictly anaerobic archaea that use oxidized C (e.g., CO2) as an electron 
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acceptor (Lyu et al., 2018; Smyth et al., 2019). Soil O2 therefore controls rates of redox-sensitive biogeochem-
ical reactions that have important implications on global nutrient cycling (Bouwman et  al.,  2013; Groffman 
et al., 1988; Hanson & Hanson, 1996; Liptzin et al., 2011).

Soil O2 levels are regulated by the diffusion of O2 into and displacement of O2 out of soil pores by water (physical 
processes), and the consumption of O2 via soil respiration (a biological process, i.e., aerobic microbial, plant 
root, and faunal respiration; Moyano et al., 2013; Neira et al., 2015; Ponnamperuma, 1972). Because O2 diffusion 
into soil water is much slower than in soil air (Moldrup et al., 2000), the presence of water inhibits O2 diffusion 
from the atmosphere to soil pores (Skopp et al., 1990). Thus, the combined effects of inhibited O2 diffusion and 
displacement, and soil respiration typically result in O2 depletion (Neira et al., 2015; Ponnamperuma, 1972).

Our ability to predict soil O2 concentrations across spatial and temporal gradients is limited. This is a result of the 
complex network of biotic and abiotic soil factors, as well as climatic conditions, that interact to modulate soil 
O2 and moisture dynamics and create widespread spatial and temporal soil O2 variability (Silver et al., 1999). For 
example, soil water inputs (precipitation and groundwater) vary seasonally, and with site-specific characteristics, 
and are modulated by hydraulic conductivity. Water demand (i.e., vegetation water uptake) also fluctuates season-
ally and varies by plant species (Ewe et al., 2007). Furthermore, O2 depletion by plant and microbial respiration 
is primarily controlled by soil temperature and soil water content and thus exhibits seasonal fluctuations (Chen 
et al., 2010; Kang et al., 2003; Lavigne et al., 2004).

Soil O2 variability is difficult to manually monitor in-situ (i.e., using handheld soil probes or gas chromatog-
raphy), and the collection of high spatial and temporal resolution O2 data is costly, as it requires soil probes 
and data logging capabilities. However, our ability to predict soil O2 concentrations across spatial and temporal 
gradients is limited. The challenges associated with measuring soil O2 have led to the use of soil moisture as a 
proxy measurement for O2 under the assumption that soil moisture is inversely proportional to O2 concentration 
(Heinen, 2005; Ridolfi et al., 2003; Rubol et al., 2013). This assumption has been implemented in many simpli-
fied process-based denitrification sub-models embedded in N-cycling and ecosystem models (i.e., those that do 
not account for microbial processes or gaseous diffusion). Some of these models utilize bivariate nonlinear power 
functions that are modeled after an inverse relationship between O2 and soil moisture to predict O2 depletion 
based solely on water-filled pore space. Examples include the NEMIS model (Hénault & Germon, 2000), the 
LEACHMN model (Sogbedji et al., 2001), and the SHETRAN model (Birkinshaw & Ewen, 2000). Simplified 
process-based denitrification models that exclude direct O2 measurements have been found to exhibit high sensi-
tivity to formulations that represent soil moisture (Hénault & Germon, 2000).

Indeed, because a combination of multiple factors modulates the physical and biological mechanisms that control 
soil moisture dynamics and soil O2 depletion (Silver et al., 1999), the use of soil moisture as a proxy measurement 
for O2 can result in inaccurate O2 estimations. An initial analysis using our high-frequency riparian soil sensor 
data shows a nonlinear relationship between O2 and soil moisture, and other O2 covariates (Figure 1 and Figure S1 
in Supporting Information S1). The results show that most soil moisture levels are associated with a wide range 
of O2 concentrations (Figure 1a and Figure S2 in Supporting Information S1), which suggests the relationship 
between these variables must be explored and defined using empirical data and nontraditional statistical methods.

Because riparian zones are located at the interface of terrestrial and aquatic ecosystems, they can function as 
hot spots for anaerobic biogeochemical soil processes (Vidon et al., 2010) and are therefore ideal study systems 
for soil O2 dynamics. Due to their unique position on the landscape, riparian soils experience frequent hydro-
logic changes that alter soil moisture content, which can modify soil O2 availability (Burgin & Groffman, 2012). 
Changes in soil moisture are triggered by hydrologic fluctuations, and the magnitude of these shifts depends on 
site-specific riparian zone characteristics, such as topography, proximity to surface and groundwater flows, the 
size and depth of the upland aquifer, and soil hydraulic properties. Riparian zones can also experience seasonal 
hydrologic fluctuations resulting from changes in connectivity with the upland aquifer (Vidon & Hill, 2004) and 
variability in water inputs due to seasonal precipitation patterns. Furthermore, site-specific dominant vegetation 
types have unique water requirements, which could impact the physical soil wetting process. The diverse potential 
combinations of soil O2 drivers suggest that the response of soil O2 to fluctuations in soil moisture is a result of 
multivariate interactions that are highly dependent on site-specific soil conditions, seasonal fluctuations in envi-
ronmental conditions, and ecosystem water and O2 demands.

Recent advancements in sensor technologies facilitate the simultaneous collection of multiple soil parameters at 
high temporal resolution, including O2 and its relevant covariates (e.g., soil moisture, soil temperature, redox, 
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CO2, precipitation). This enables us to comprehensively assess potential drivers of soil moisture variability and 
the related O2 response. Importantly, two types of O2 can be measured in soil: gaseous O2 (in air-filled pore 
spaces between soil particles) and dissolved O2 (in soil water and water films surrounding soil particles; Neira 
et al., 2015). We measured gaseous O2 in the present study. Continuous in-situ monitoring of O2 in soil is most 
commonly monitored as gaseous O2, as measurement of dissolved O2 in soil requires extraction of soil water and O2 
measurement via sensor (optical or electrochemical), titrimetric, or colorimetric methods. While high-frequency 
data for multiple parameters is advantageous for ecosystem monitoring, it requires the use of tools that are specif-
ically suited to analyze multivariate and nonlinear data. The Kohonen unsupervised self-organizing map (SOM), 
a type of artificial neural network, is a powerful clustering tool that can reliably analyze such multivariate and 
nonlinear data (Rivera et al., 2015), making it an ideal approach for detecting patterns in large environmental 
datasets. The SOM can overcome limitations of traditional statistical methods, as it can tolerate nonlinearity, 
temporal and serial autocorrelation, and multicollinearity (e.g., Figure 1; Kundu et al., 2013; Merdun, 2011). The 

Figure 1. Scatter plots displaying nonlinear relationships between (a) O2 and volumetric water content (VWC), (b) log transformed O2 and original VWC values, (c) O2 
and soil temperature, and (d) O2 and hourly precipitation sum. High frequency soil sensor data were collected in a frequently inundated position within a riparian area 
in northern Vermont, USA from 2017 to 2020.
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SOM is often applied in exploratory data analysis to leverage the temporal (or spatial) autocorrelation that may 
exist in the data and identify clusters of like observations (Kalteh et al., 2008; Kohonen, 2013).

The SOM maps multivariate data to a two-dimensional map/lattice, where similar data points are situated in 
proximity. In contrast to other, more traditional clustering algorithms, (e.g., k-means), the SOM approach enables 
visualization of variables that drive clustering, and thus, is a potentially powerful statistical tool for leveraging 
the capacity of high frequency sensor networks to monitor physical and biogeochemical parameters. SOMs have 
been successfully applied to resolve spatial and temporal heterogeneity in complex systems within large soil and 
water quality databases (Liao et al., 2019; Obach et al., 2001; Wu et al., 2008), as well as to classify sediment 
(Alvarez-guerra et  al.,  2008) and soil types (Tissari et  al.,  2007). Additionally, the SOM approach has been 
utilized to address questions concerning water resources and hydrology, such as rainfall-runoff relationships 
(Lin & Chen, 2006), precipitation dynamics (Kalteh et al., 2008), and links between physical soil properties and 
hydrologic soil processes (Merdun, 2011). However, to our knowledge, these tools have not yet been used to 
detect patterns in high frequency soil sensor time series.

Using the SOM approach, we addressed two main questions: (a) Can the SOM approach provide additional 
insight on the O2/soil moisture relationship by incorporating multiple predictors, and (b) Which combinations of 
variables lead to high versus low soil O2? We clustered high frequency soil and meteorological data collected over 
3 years from a poorly drained wetland position within two riparian sites located in northeastern Vermont, USA. 
We studied two riparian soil environments with contrasting site characteristics (e.g., adjacent land use, vegetative 
cover, site elevation), allowing us to address our questions in two different riparian lowland settings.

2. Methods
2.1. Study Sites

To investigate and better characterize O2 variability within riparian soils, we studied two riparian soil transects 
with contrasting catchment characteristics. Both transects are located within Lake Champlain's Missisquoi 
Watershed in Vermont, USA (Figure 2) and are part of a larger soil monitoring network. This high frequency 
soil sensor network continuously measures physical and chemical soil conditions 15 cm below the soil surface 

Figure 2. (a) Map of the USA with the State of Vermont highlighted in green. (b) Map of the State of Vermont, USA, and the province of Quebec, Canada, with 
The Missisquoi basin, a subbasin of the Lake Champlain Basin, outlined in black. The Champlain Valley (CV) site, which is located within the Hungerford Brook 
subwatershed, is shaded in gray. The Green Mountains (GM) site is located within the Trout River subwatershed. (c) Satellite image of the CV site (Sheldon, VT) with 
a black circle indicating where sensors are installed. (d) Photograph of the CV site riparian transect. (e) Satellite image of the GM site (Montgomery, VT) with a red 
circle indicating where soil sensors are installed and (f) photograph of the GM transect.
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along a gradient of landscape positions (i.e., spanning upland, wetland, and near-stream locations). 
Included in this study are data collected from one low-lying, poorly drained position within each 
transect, where soil O2 concentrations ranged from anoxic to near atmospheric. One transect is 
situated within the Champlain Valley (CV) physiographic province (hereafter referred to as “CV” 
site), a primarily agricultural catchment in Sheldon, VT. The other transect is located within a 95% 
forested catchment with minimal anthropogenic impact that is located within the Northern Green 
Mountain physiographic province (hereafter referred to as “GM” site), approximately 7 km north 
of the town of Montgomery, VT (Landsman-Gerjoi et al., 2020).

The elevation range of the CV site spans 101–106  m above sea level. Vegetation at this site 
includes American beech (Fagus grandifolia) trees, various fern species (group Pteridophytes), 
and nettles (Urtica dioica) (Landsman-Gerjoi et al., 2020). Soil types at the CV site include Incep-
tisols (Aquic Dystric Eutrudepts) and Entisols from glaciolacustrine and glaciofluvial fluvial 
material (i.e., Aquic Udipsamments and Fluvaquentic Dystrudepts; Soil Survey Staff et al., 2019). 
The Green Mountains (GM) site is higher in elevation (350–365 m above sea level) and its vege-
tation is characteristic of a secondary growth northern hardwood forest, including sugar maple 
(Acer saccharum), yellow birch (Betula alleghaniensis), white ash (Fraxinus Americana) and red 
spruce (Picea rubens) (Landsman-Gerjoi et al., 2020). Soils at the GM site are Inceptisols (i.e., 
Fluvaquentic Dystrudepts and Fluvaquentic Endoaquepts; Soil Survey Staff et  al.,  2019). Both 
study sites experience a temperate climate with four distinct seasons, including snow-dominated 
winters (22% and 24% of annual precipitation at CV and GM site, respectively), a snow melt period, 
temperate summers with occasional rains, and a fall season with high litter input (Landsman-Gerjoi 
et al., 2020). Differences in elevation result in contrasting meteorological conditions between the 
two sites (Table 1). Groundwater table depth was measured continuously at 15-min intervals at both 
sites using HOBO water level loggers (Onset Corporation, Cape Cod, MA, USA) that were installed 
inside hand dug wells in both upland and frequently inundated areas.

2.2. Soil Monitoring Network

We assessed ecosystem water delivery by measuring soil volumetric water content (VWC) and 
precipitation. Water demand (i.e., vegetation water uptake) was indirectly assessed by measuring 
ambient temperature (TA). Though soil carbon dioxide (CO2) measurements are not flux measure-
ments and cannot be used as a direct indicator of soil respiration or O2 demand, CO2 measurements 
were used as a proxy for O2 demand. Previous studies (e.g., Jarecke et al., 2016) have documented 
strong inverse relationships between subsurface (10 cm) gas-phase soil pore O2 and CO2. Soil volu-
metric water content (VWC; measuring range = 0–1.0 m 3/m 3; accuracy = ±0.03 m 3/m 3), temper-
ature (T; measuring range = −40 to +60°C; accuracy = ±1°C), and electrical conductivity (EC; 
measuring range = 0–23 dS/m; accuracy = ±10% from 0 to 7 dS/m) were monitored at 15-min 
intervals using 5TE sensors (Meter Group, Pullman, WA).

Carbon dioxide in soil air was measured using GMT221 sensors (Vaisala, Helsinki, Finland; meas-
uring range = 0–20%; accuracy = ±1.5% of range and ±2% of reading). Before deployment, the 
CO2 sensors were calibrated with a three-point adjustment and corrections for barometric pres-
sure (based on elevation) and humidity. Pure N2 gas was used as a 0% CO2 standard. The internal 
temperature sensor on the CO2 probes was used for the temperature correction. Oxygen in soil air 
(i.e., gas-phase soil pore O2; hereafter referred to as soil O2) was monitored at 15-min intervals 
using Soil Response O2 sensors (Apogee instruments, Logan, UT; measuring range = 0–100%; 
sensitivity = 2.6 mV per % O2). Before deployment, the O2 sensors were calibrated based on an 
open-air oxygen reading with corrections for barometric pressure (based on elevation), temperature, 
and humidity. The gas permeable membrane inlet of the O2 sensors was encased in a porous diffu-
sion head and was equipped with a heating element to prevent water from pooling and blocking O2 
diffusion. The O2 sensors are subject to long-term drift (1 mV/year).

Oxygen and CO2 sensors were installed within 45 cm of each other and were deployed inside poly-
vinyl chloride (PVC) pipe (with membrane inlets exposed to the soil) to secure their position in the 
soil. Silicone sealant was applied between the O2 sensor diffusion head and the PVC pipe to prevent Se
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water from entering the electrical connections. For water-proofing purposes, CO2 probes were deployed inside 
a gas-permeable membrane sleeve. We filled a portion of the membrane sleeve with silicone sealant to prevent 
moisture from entering the electrical connections between the probe and the data logger cable. Because the 
sensors were shielded from the soil and enclosed within either a diffusion head (for O2) or a membrane (for CO2), 
it is probable that the air inside the chambers took some time to reach the same concentration as the surrounding 
soil. Each site (CV and GM) was equipped with a meteorological station that measured TA, precipitation, photo-
synthetically active radiation, solar radiation, relative humidity, wind direction, wind speed, and dew point at 
5-min intervals. Data included in this study were collected from July 2017 to June 2020.

2.3. Data Analysis

2.3.1. Approach

To identify suites of soil conditions (clusters) associated with various soil O2 regimes, we employed a Kohonen 
unsupervised SOM approach using the kohonen package in R (Wehrens & Buydens, 2007). We used an “unsu-
pervised approach,” meaning we fed independent variables to the model and excluded the response variable, O2. 
Furthermore, we did not constrain the number of outcome clusters (i.e., soil condition descriptors), so that we 
could empirically determine the most suitable number of clusters for our dataset. We first used exploratory data 
analysis to identify independent variables with a potential to be linked to O2 variability within our sites, and to 
examine meaningful ranges of O2 as the response variable. We also selected input variables by examining compo-
nent planes generated by early iterations of the SOM, which allow for the visualization of clustering according 
to each independent variable. We then ran a SOM analysis approach, which involved several iterative steps, to 
optimize SOM execution and validate clusters, as described below. The SOM mapped our multivariate dataset 
to a two-dimensional map/lattice, where observations linked to similar combinations of values for input varia-
bles were situated in proximity to each other. Finally, we compared O2 values across clusters, post hoc, to better 
understand drivers of specific O2 ranges.

2.3.2. Overview of Kohonen Unsupervised Self-Organizing Map

A detailed description of the SOM algorithm can be found in Kohonen (2013) and Underwood et al. (2021). To 
summarize, the method clusters multivariate observations onto a reduced-dimension lattice. Each lattice node is 
first assigned a vector of random values (weights) ranging from 0 to 1. The length of this vector is equal to the 
number of input variables in each observation. A single vector of input values (observed data) is simultaneously 
presented to each node's weight vector. The vector of input values is compared to the weight vector using the 
Euclidian distance formula, and the lattice node with the closest matching weight vector is designated as the best 
matching unit (BMU). The weight vector of the BMU, in addition to nodes surrounding the BMU (defined as a 
“neighborhood”), is updated to resemble the input vector more closely. The neighborhood function is unique to 
the SOM, as other clustering tools (e.g., K-means) only update the weight vector of a single node (Merdun, 2011). 
The user customizes the learning rate, α, which controls the amount by which weights are adjusted for both the 
BMU and nodes within the neighborhood around the BMU. This process is repeated until all observations have 
been presented to the lattice, which constitutes one iteration of the SOM algorithm. Both the learning rate, α, 
and the neighborhood size are decreased as subsequent iterations of the algorithm are executed, by relying on 
user-defined functions. The size of the neighborhood is eventually reduced to one node—the BMU. Multiple 
iterations are executed until the algorithm converges. Once the algorithm converges, the adjusted weight vectors 
will have self-organized across the lattice such that similar observations will be aggregated together. To define 
clusters of observations (i.e., nodes of the lattice containing similar weight vectors), the distance between weight 
vectors is calculated using a hierarchical agglomerative clustering method (Underwood et al., 2021).

2.3.3. Data Analysis: Initial Data Conditioning, Exploratory Analysis, and Selection of Independent 
Variables

To prepare our high frequency soil and meteorological observation data for input to the SOM, data conditioning 
steps were required. Data from 27 June 2017 to 27 June 2020 from both study sites were selected for analysis. 
Some observations were missing from the time series due to sensor and data logger dysfunction caused by inad-
equate solar power, mostly during winter and early spring. Timesteps with missing O2 or precipitation observa-
tions were excluded from the dataset, leaving 91% of the CV time series and 27% of the GM time series to use as 
SOM input data. Carbon dioxide was not included as an input variable to the GM SOM, as all CO2 observations 
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were missing from the dataset. After removing timesteps with missing O2 or precipitation observations, missing 
values of other input variables (ranging from 0% at the CV site to 0.9% of observations at the GM site; Table S1 
in Supporting Information S1) were replaced with the overall median value using the Hmisc package's impute 
function in R (Harrell, 2020; Table S1 in Supporting Information S1). We then reduced the volume of data by 
downscaling our 15-min observations to an hourly frequency using hourly median values for each variable. We 
derived additional time series to potentially include in our dataset by computing rolling averages (for VWC, soil 
T, and ambient T) and rolling sum (for precipitation) ranging from 12 hr to 2 weeks prior to each observation to 
investigate the effects of antecedent soil and meteorological conditions on soil O2 dynamics. We calculated the 
Julian date of each observation to include in the SOM as an independent variable. We then performed Principal 
Component Analyses (PCA), a dimensionality reduction tool, on a correlation matrix of all available independent 
variables to confirm that the O2 data clustered distinctly, based on the available parameters. PCA analyses were 
also used to establish the dimensions of the SOM lattice best suited to our dataset (Underwood et al., 2021).

We selected a suite of independent variables to include in our final SOMs (Table S2 in Supporting Informa-
tion S1) by first running provisional SOMs with all available independent variables (listed in Supporting Informa-
tion S1). We observed the resulting component planes and plotted the distribution of each variable, separated by 
cluster, using box and whisker plots. We examined the component planes (Figures S7–S10 in Supporting Infor-
mation S1) and box and whisker plots to manually identify variables that lacked distinct variability across clusters 
and excluded those variables from the input dataset (e.g., wind speed). A clear pattern or structure revealed by a 
component plane indicates that the variable is an important contributor to the dataset's variability. A uniform or 
random pattern suggests that the variable does not explain much variability.

2.3.4. Data Analysis: SOM Data Preprocessing

We prepared the input data for the SOM by normalizing each independent variable to a value between 0 and 1 
using a range normalization technique. Normalization improves model performance by ensuring different meas-
urement units and magnitudes do not influence the weight of each independent variable. In particular, range 
normalization has been found to result in optimal SOM performance, as it minimizes the distance between the 
data points and the nodes to which they are matched (measured as quantization error (QE)), thus improving model 
fit. QE represents the magnitude of error between the input vector and its closest match on the SOM. Thus, a 
lower QE indicates the SOM is more effectively representing the input data in a lower-dimensional space. The 
QE can be used to compare the performance of different iterations of the SOM trained with the same input data-
set (not to compare between SOMs with different input datasets; Céréghino & Park, 2009). Additionally, range 
normalization reduces discontinuities between the structure of the input data and the map layout (measured as 
topographic error; Alvarez-Guerra et al., 2008; Breard, 2017). The response variable, O2, was not presented as 
an input to the SOM.

We ran SOMs on different groupings of the CV observations to evaluate which driving features were revealed 
when differing amounts of data were fed to the SOM. We initially ran one SOM for all the soil O2 data from the 
CV site and found that the very abundant high O2 values masked the signal of the less frequent low O2 values. 
This prevented identification of the nuanced conditions or factors that led to low O2. We therefore performed 
SOMs on separate subsets of the CV data for a more refined assessment of factors associated with O2 dynamics, 
and to ensure that factors associated with high O2 conditions could be parsed from factors associated with low O2 
conditions. We subdivided the associated multivariate time series observations into sets associated with distinct 
ranges of O2 values (high and low), using the Jenks Natural Breaks optimization method (Jenks, 1967; Khamis 
et al., 2018) via the BAMMtools package in R (Rabosky et al., 2014). The Jenks Natural Breaks optimization 
method is a data clustering technique designed to classify data into a user-defined number of ranges in a way that 
minimizes within-group distances between values. We ran only one SOM for all O2 observations from the GM 
site, as O2 values ranged from 0% to 0.6%, a range of values that corresponded to low O2 conditions determined 
for the CV site.

2.3.5. Data Analysis: SOM Computation and Model Optimization

After selecting a suite of independent variables to include in each dataset (CV all observations (CVAO), CV high 
O2, CV low O2, GM), we adjusted the number of lattice nodes, the lattice dimensions, and the value of k to maxi-
mize between-cluster variance and minimize within-cluster variance. It is important to optimize the dimensions 
of the SOM lattice for a given dataset, as an unsuitable lattice configuration can distort the distribution of the 
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input variables across the map. For each dataset, we followed Vesanto's rule (Vesanto et al., 2000) to pinpoint 
the optimal number of lattice nodes. We also approximated the column-to-row ratio of the lattice as the ratio 
of the  two largest eigenvalues from PCA using the original, non-normalized values (Céréghino & Park, 2009). 
A hexagonal lattice arrangement was used. The lattice for the CVAO, CV high O2, CV low O2, and GM SOM 
contained 16 rows and 57 columns, 17 rows and 34 columns, 13 rows and 33 columns, and 15 rows and 27 
columns, respectively. The CVAO, CV high O2, CV low O2, and GM SOM lattice configuration contained 912, 
578, 429, and 405 nodes, respectively.

SOM training was performed over 20,000 iterations, and α was set to decrease linearly from 0.05 to 0.01. The 
neighborhood size started at a radius from the BMU of two-thirds the lattice size and decreased linearly to a value 
of 0, at which point only the weights of the BMU were being updated. For a given dataset, the SOM iteration that 
maximized the nonparametric F statistic (ratio of within-cluster to between-cluster variance) and minimized QE 
(measure of map resolution) was selected as the final model run (Underwood et al., 2021). The nonparametric 
F-statistic was calculated using the adonis function in R's Vegan package (Oksanen et al., 2019). The F-statistic 
values for the CVAO, CV high O2, CV low O2, and GM SOM were 63,801, 30,891.5, 31,395.1, and 32,232.6, 
respectively. Quantization error values (unitless) for the CVAO, CV high O2, CV low O2, and GM SOM were 
0.002152, 0.000505, 0.000305, and 0.000337, respectively.

For a given dataset, to identify unique attributes of each cluster, we plotted the (range normalized) intra-cluster 
mean, relative to the overall mean, for each input variable. This metric was used to visualize suites of variables 
and their relative value ranges that constituted different environmental conditions associated with various O2 
levels. Mixed-effect models that incorporated random effects for temporal autocorrelation were used to test for 
differences in each input variable according to cluster assignment using the lme function in R's nlme package 
(Pinheiro et al., 2014). Standard errors of the mean of original (i.e., not range-normalized) values were compared 
to assess whether inter-cluster means were meaningfully different. The cluster assignments for each observation 
were then plotted onto an O2 time series figure (original values) to display temporal fluctuations in classes of 
environmental conditions.

3. Results
3.1. Champlain Valley Site: Champlain Valley All Observations (CVAO) SOM

Because the processes that control meteorological and soil conditions exhibit patterns that repeat over time, 
high frequency environmental observations are usually temporally autocorrelated. We detected temporal auto-
correlation in our input data for each SOM (Figures S3–S6 in Supporting Information S1). At the CV site, we 
first performed a SOM on all observations (O2 = 0–21.47%, n = 22,427) to assess whether our questions could 
be adequately addressed at this scale (Figure 3). After examining the component planes generated by the input 
variables (Figures S7–S10 in Supporting Information S1), we selected key input variables for the CVAO SOM 
(mean O2 = 11.14%): soil T (mean = 8.6°C), 1-week cumulative antecedent precipitation (hereafter referred to as 
“1-week precipitation”) (16. 28 cm), VWC (0.51 m 3/m 3), Julian date (183), CO2 (2,805 ppm), EC (0.19 dS/m), 
and dew point (2.41°C). The CVAO SOM assigned observations to six different clusters (Figure 3c and Table 2). 
Most (48.4% of observations) were categorized by the SOM as wet and cool, with low (below average) CO2, EC, 
and 1-week precipitation (clusters 5 and 6). These clusters occurred during early spring (cluster 5) and winter 
(cluster 6). Clusters 2 and 3 (21.2% of observations) fell into a dry and warm category with high (above average) 
CO2 and dew point, and low 1-week precipitation and EC. Both clusters occurred during summer months, but 
cluster 3 occurred during early spring, too. Cluster 1 (17.5% of observations) included dry and warm soil condi-
tions, with high 1-week precipitation, CO2, and dew point, and low EC. Cluster 1 occurred from mid-summer to 
fall. Some (12.9%) observations were grouped into a wet category with high 1-week precipitation, EC, and dew 
point, and low CO2 (cluster 4). Cluster 4 occurred during winter months.

While the dry and warm (July–October) and wet and cool (October–April) categorization revealed a seasonal 
pattern in the variability of the key controls on soil O2, clusters derived from all CV observations did not 
adequately differentiate between conditions that led to high versus low O2. This is evidenced by the wide range 
of O2 values included in clusters 1 (11%–20%), 2 (2%–20%), 3 (0.1%–20%), 4 (1%–20%), 5 (0.1%–21%), and 6 
(0%–21%). To more effectively address our questions, further sub-setting of our data into observations associated 
with low O2 versus high O2 was therefore needed to parse the unique factors (and possibly different combinations 
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of factors) within or across seasons that led to anoxic and oxic conditions. Based on Jenks Natural Breaks, we 
therefore split the CV observations into two datasets associated with high (12.9%–21.5%, n = 12,593) and low 
(0%–4.3%, n = 7,043) O2 to differentiate conditions that led to contrasting O2 regimes. We performed separate 
SOMs (CV high O2 and CV low O2) on those subsets.

3.2. Champlain Valley Site: High O2 SOM

Key input variables selected for the CV high O2 SOM (mean O2 = 18%) were determined by examining compo-
nent planes and were identified as soil T (mean = 10.3°C), 2-week cumulative antecedent precipitation (hereafter 
referred to as “2-week precipitation”) (2.74 cm), VWC (0.46 m 3/m 3), CO2 (3,215.2 ppm), and Julian date (192) 
(Figure S8 in Supporting Information S1). The high O2 SOM identified four distinct clusters of multivariate time 
series observations (Figure 4c). High O2 events, which made up 49% of the CV O2 values, were somewhat evenly 
distributed among winter (26% of data points) spring (17%), summer (25%), and fall (32%). Oxygen values were 
consistently high from May 2018 through April 2019 (Figure 4b), and further research is required to identify 
what prevented O2 depletion under wet and cool soil conditions during this period. At the CV sampling location, 
groundwater levels generally decreased during the growing season (early May to early October; average = 0.82 m 
below the soil surface) and increased during cooler months (average = 0.38 m below the soil surface).

Soil conditions within clusters 1 and 4, which made up 62% of the CV high O2 data points, were generally dry and 
warm (Table 3). Cluster 1, which included 53% of data points, is associated with average (compared to the overall 
mean) 2-week precipitation and average CO2 values. Contrastingly, cluster 4, which encompassed 8.6% of data 
points and had below average 2-week precipitation, was associated with the highest average CO2 of all four clusters. 
There was overlap of the Julian date ranges of clusters 1 and 4 during warm months (Table 3). Wet and cool soil 
conditions (clusters 2 and 3) described 38% of data points within the CV high O2 dataset and were associated with 
the highest average O2 of all clusters. Key differences between clusters 2 and 3 include Julian date range (October–
January, and January–April, respectively) and 2-week precipitation (39.9 and 19.2 cm, respectively) (Table 3).

3.3. Champlain Valley Site: Low O2 SOM

Low O2 values were distributed somewhat uniformly among the four seasons (winter = 32%, spring = 35%, 
summer = 12%, and fall = 21%). Low O2 values represented 27% of the O2 dataset and occurred intermittently 

Figure 3. Results from the Champlain Valley all observations (CVAO) self-organizing map (SOM), including (a) volumetric 
water content (VWC) time series with dashed line representing mean VWC for the CVAO dataset, (b) O2 time series 
highlighted with the six clusters identified by the CVAO SOM, (c) bar plots displaying range normalized intra-cluster means 
of each input variable (n = number of observations per cluster). “NA” represents O2 values that do not have corresponding 
independent variable values. 1-wk precip., one-week antecedent precipitation; EC, electrical conductivity.
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throughout fall 2017 and winter 2018. Low O2 values were observed consistently from fall (September, 
October, and November) 2019 through spring (March, April, and May) 2020. There were consistent periods 
of low O2 during the spring snowmelt period (April–May) of 2018, 2019, and 2020 (Figure 5a). Based on 
an examination of component planes generated by the potential input variables (Figure S9 in Supporting 
Information S1), we included the same suite of input variables in the CV low O2 SOM as the CV high O2 
SOM (soil T, 2-week precipitation, VWC, CO2, and Julian date). Average values for these variables were 
5.8°C, 3.52 cm, 0.57 m 3/m 3, 1,635.2 ppm, and 175.2, respectively. Median values of each input variable 
were significantly different between the CV high and low O2 datasets (p < 0.001). The SOM identified five 
distinct clusters for the CV low O2 SOM (Table 4). In contrast to the CV high O2 SOM results, the majority 
of low O2 data points (69%) could be categorized as wet and cool with low 2-week precipitation and CO2 
(clusters 1 and 3). Clusters 1 and 3 differed in Julian date ranges (Figure 5c). Clusters 4 and 5 included 9.3% 
of data points, which fell into a very dry and warm category, with average (cluster 4) and above average 
(cluster 5) CO2 and 2-week precipitation (Figure 5c). Unique to the CV low O2 SOM, an additional cluster 
was identified (cluster 2), which encompassed 21.5% of data points. Cluster 2 occurred throughout October 
and November, and May and June, and could be described as warmer than average, with average soil mois-
ture, despite above average antecedent precipitation and below average CO2 (Table 4).

3.4. Green Mountains Site SOM

We included all values from the GM dataset in one SOM, as O2 values at the GM site were all low, rang-
ing from 0% to 0.6% (n = 6,921). A unique set of input variables was chosen for the GM model based on 
the component planes (Figure S10 in Supporting Information S1): cumulative 2-week antecedent ambient 
temperature (hereafter referred to as 2-week TA), VWC, 1-week precipitation, and Julian date. Average 
values for these variables were 11.0°C, 0.53 m 3/m 3, 1.99 cm, and 186.6, respectively. The low O2 SOM 
grouped the observations into 5 different clusters. Observations from the GM dataset can generally be 
described as dry and warm, wet and cool, or wet and warm (Table 5). Average groundwater levels at the 
GM sampling location were significantly higher (p < 0.001; average = 0.05 m below the soil surface) and 
remain elevated throughout the year.

Cluster 2 encompassed the most data points (46.8%), which can be described as dry and warm, with below 
average 1-week antecedent precipitation, occurring during early spring/summer. Clusters 3 and 5 included 
28% of data points, which can be summarized as warmer and wetter than average conditions, with differ-
ing 1-week precipitation and Julian date ranges (Figures 6b and 6c). Cluster 4 (15.4% of data points) can 
be described as cool, and drier than average, with low 1-week precipitation. Encompassing 9.3% of data 
points, cluster 1 can be described as wet and cool, with low 1-week precipitation (Figure 6c).

Oxygen values included in the GM SOM remained consistently at or below zero percent throughout 
the entire sampling period, with the exception of an O2 event in late December 2017 that reached 0.6% 
(Figure 6c). As such, it should be noted that the clustering results of the GM dataset incorporate the single 
O2 event (Cluster 1) and therefore may not be representative of typical conditions observed at the GM 
site. Clusters 1 and 4 occurred throughout winter 2017/2018 and were associated with wet and cool soil 
conditions. Due to the interference of winter weather with our instrumentation, we were not able to monitor 
winter 2018/2019 or 2019/2020. Clusters 2 (warm/dry), and 3 (warm/wet) occurred intermittently from 
May to October 2018, and from June to September in 2019. O2 values within cluster 5 (warm/wet) occurred 
as isolated events each summer during the months of July (2018 and 2019) and May and June 2020.

4. Discussion
4.1. SOM Results Confirm Multivariate and Complex Controls on O2

We addressed the question: Can the SOM approach provide additional insight into the O2/soil moisture 
relationship by incorporating multiple predictors? Our results confirm that using a unique combination of 
high frequency, multiparameter soil sensor data collected over multiple years, the SOM identified combi-
nations of variables that control soil O2 levels. Importantly, and in contrast to traditional ecological assump-
tions, low O2 levels did not correspond solely with increasing soil moisture. Indeed, high O2 levels persisted 
in both high and low moisture conditions. Low O2 conditions instead depended on temporally varying C
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combinations of water inputs, water demand, and O2 demand. The output of our unsupervised clustering analysis 
from both field sites (i.e., all four SOMs) revealed a pronounced seasonal signal. This is evidenced by clustering 
according to dry soil conditions during warm months and wet soil conditions during cool months, with varying 
antecedent precipitation, soil CO2, and soil temperature conditions.

Our results show that the information gained from the SOM clustering changes with the magnitude of variability 
in the input data. When all observations from the CV site were included in one SOM, we were able to detect the 
seasonal pattern driving fluctuations in the controls on soil O2 but not the nuanced conditions that led to oxic 
versus anoxic O2. We thus ran separate SOMs on observations associated with high and low O2 and hereafter refer 
to the results from those models.

At the CV site, the majority (69%) of low O2 values were associated with wet and cool soil conditions with 
below average CO2 and 2-week antecedent precipitation. These observations occurred from November to May 
(Figure 5, cluster 3). Under these conditions, a physical saturation process (as opposed to biological O2 consump-
tion) dominated, as the combined effects of decreased water demand (Sevanto et al., 2006) and sufficient water 
inputs from precipitation likely prevented the reaeration of soil pores (Neira et al., 2015). Furthermore, in North-
ern temperate climates, ground frost can persist during this period (November–May), especially in areas of open 
land without significant canopy cover (Shanley & Chalmers, 1999), which could have prevented the reaeration 
of soil pores. All low O2 values at the CV site that were observed under wet and cool conditions were associated 
with below average subsurface CO2 (used here as an indicator of soil O2 demand), indicating that O2 consumption 
rates were relatively low under the majority (69%) of low O2 conditions. This finding is consistent with those 
of Davidson et al. (1998) and Moyano et al. (2013) who observed decreased soil respiration rates under wet and 
cool soil conditions during the non-growing season, which resulted from reduced plant respiration and high soil 
moisture levels impeding O2 diffusion, and thus, decomposition and CO2 production (Doran et al., 1990; Moyano 
et al., 2013; Skopp et al., 1990). It is therefore possible that a restriction of air exchange between the atmosphere 
and soil pores is necessary in order for low levels of biological soil respiration to markedly deplete O2 before it 
is replenished. We note that the effects of subtle shifts in CO2 on O2 depletion under wet and cool soil conditions 
may have occurred at time scales that were finer in resolution than our hourly SOM input data. Therefore, analyz-
ing a dataset of finer temporal resolution, or one that encompasses a shorter time period, may help detect a more 
significant impact of biological O2 consumption under wet and cool conditions.

Contrastingly, most (62%) high O2 values from the CV site were associated with dry and warm conditions that 
occurred during warmer months (April–October, Figure 4). This indicates that dry and warm soil conditions 
inhibited soil O2 depletion by allowing O2 to readily exchange with the atmosphere via increased air-filled pore 

Figure 4. High O2 self-organizing map (SOM) results for the Champlain Valley (CV) site, including (a) volumetric 
water content (VWC) time series with dashed line representing mean VWC for the CV high O2 dataset, (b) O2 time series 
highlighted with the four clusters identified by the high O2 SOM, (c) bar plots displaying range normalized intra-cluster 
means of each input variable (n = number of observations per cluster). Clusters that are not shaded (represented by “NA”) 
correspond to O2 values outside of the high O2 range. 2-wk precip., two-week antecedent precipitation.

 19447973, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034022, W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

LANCELLOTTI ET AL.

10.1029/2022WR034022

12 of 18

space. However, as 62% of high O2 values were associated with above-average soil CO2 levels (clusters 1 and 4), 
our findings suggest that waterlimitation did not suppress soil respiration. Furthermore, these findings contradict 
previous studies by Doran et al. (1990) and Orchard and Cook (1983) that documented decreased soil respiration 
rates resulting from elevated soil temperatures and low soil matric potential during warm months. It is therefore 
likely that, under dry and warm soil conditions at our sites, sufficient soil moisture is required to block O2 diffu-
sion in order for elevated soil respiration rates to sufficiently deplete O2. We note that VWC may need to decrease 
below field capacity (not measured in this study) in order for water limitation to significantly reduce soil respira-
tion rates (Davidson et al., 1998). Additionally, dry and warm soil conditions coincide with the growing season 
in temperate systems where the combined effect of elevated plant water uptake and negative soil matric potential 
can lower hydraulic conductivity (i.e., inhibit additional water inputs from percolating through the soil matrix) 
(Hardie et al., 2012). Under this scenario, additional precipitation inputs may not have resulted in increased VWC 
and therefore, despite elevated CO2 levels (i.e., high O2 demand) at this time, O2 usually remained near atmos-
pheric levels.

4.2. High Soil Moisture Levels Do Not Always Lead to Low O2

Although the majority of high O2 levels occurred when soils were dry and warm, and most low O2 levels occurred 
under wet and cool conditions, we also intermittently observed the opposite behavior, indicating soil moisture 
alone is not always an accurate proxy for soil O2. Similar to our findings, Burgin and Groffman (2012) observed 
low gas-phase soil pore O2 under dry VWC conditions in a riparian wetland during summer. These exceptions 
hold key insights into the importance of antecedent conditions (i.e., time lag effects) in determining soil O2 condi-
tions. For example, low O2 occurred in June and July under dry and warm (below average VWC) conditions with 
above-average 2-week antecedent precipitation inputs. This is evidenced by clusters 4 and 5 from the CV low O2 
SOM, which accounted for 9.3% of low O2 observations (Figure 5). In this case, high antecedent precipitation 
inputs could have temporarily saturated the soil, thus stimulating soil respiration, while simultaneously blocking 
O2 diffusion. This could have triggered a significant O2 depletion that persisted even after soils dried back down. 
This scenario agrees with the preceding warm and above-average 2-week precipitation conditions typical for 
cluster 2. Our findings agree with those of Silver et al. (1999), who found that forest soil O2 concentrations were 
negatively correlated with cumulative rainfall for up to 4 weeks preceding O2 measurements. The impact of ante-
cedent conditions on O2 dynamics is also evidenced by the findings of Smyth et al. (2019), who found that high 
temporal resolution sensor data, especially gas-phase soil pore O2, revealed distinct lag periods between changes 
in soil conditions and subsequent biogeochemical activity.

It is important to note that clusters 4 and 5 were present only once throughout the entire sampling period (in 
June–July 2019) and occurred together in quick succession, which indicates these conditions were unusual for 
our site, at least within our three study years. The anomalous low O2 conditions in summer (June–July 2019) 
were followed by a rapid increase in soil O2. Burgin and Groffman (2012) and Liptzin et al. (2011) documented 
rapid increases after low O2 conditions in summer and attributed these events to dry soil macropores and plant 
senescence.

Another example of counterintuitive patterns is the occurrence of observed high O2 levels during fall, winter, 
and spring months (October–April), when conditions were wet and cool (38.3% of high O2 data points). Two 
distinct near-atmospheric O2 events occurred (one in December–February 2017/2018, the other in November–
April 2018/2019) under such conditions (clusters 2 and 3 from CV high O2 SOM, Figure 4), and the latter event 
had a relatively long duration. This suggests that the high O2 levels were not a result of a brief O2 transition 
period, but instead reflect the absence of an O2 depletion mechanism in response to increased soil moisture. 
Interestingly, these conditions mirror those that resulted in low O2 levels (Table 4), indicating that decreased soil 
respiration rates characteristic of clusters 2 and 3 from the high O2 SOM likely did not prevent O2 depletion. The 
only difference between wet and cool conditions that resulted in low O2 (Table 4) and clusters 2 and 3 from the 
high O2 CV SOM (Table 3) were higher 2-week precipitation values associated with low O2 during January–May, 
which further emphasizes the important role of antecedent conditions in O2 depletion. If O2 consumption rates 
did not exceed the rate of O2 delivery, it is possible that these distinctive O2 levels were a result of oxygenated 
water inputs originating from downward flow of oxygenated surface water, or oxygenated groundwater recharge 
(Lahiri & Davidson, 2019; Nelson, 2002). Regardless, our results show that very similar soil conditions can result 
in distinctive O2 levels. A better understanding of the drivers of soil O2 is therefore required to investigate such 
heterogeneity.C
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Our results also illustrate the utility of high frequency in-situ time series in capturing infrequent and unanticipated 
events, especially in cases when antecedent conditions may alter the O2 response. Indeed, intermittent manual 
sampling campaigns could either miss these events entirely, mischaracterize the commonality of their occurrence, 
or have limited capacity to identify event drivers. As in-situ sensing networks become more commonplace in 
soil science research, we expect increased detection of these counterintuitive events. This will ultimately change 
how we understand the drivers of fluctuating O2 conditions in the soil environment, and in particular, the role of 
antecedent conditions.

4.3. Site-Specific Controls on the Drivers of O2 Regimes

While the key controls on soil O2 were constant across sites, site-specific characteristics modulated the relative 
rates and impacts of ecosystem water inputs, water demand, and O2 demand, which could have led to variable O2 
regimes across sites. Indeed, the constant anoxia (O2 = 0–0.6%) and elevated VWC values (0.48–0.61 m 3/m 3) 
observed at the GM site were likely due to unique site-specific features. The combined effects of topography and 
groundwater hydrology dynamics provided a steady water supply that created consistently saturated soil condi-
tions. This is further evidenced by wet and warm soil conditions unique to the GM site, indicating that soils did 
not dry out under increased ambient temperatures. This finding is consistent with those of Silver et al. (1999), who 
found that soil O2 levels were sensitive to hydrologic inputs and were significantly correlated with a topographic 
gradient spanning ridge, slope, and valley locations. The consistently high water inputs at the GM site generated 
constant anoxia by preventing the re-aeration of soil pores, and/or displacing O2. As expected, we observed 
seasonal fluctuations in key O2 controls (2-week antecedent ambient T, 1-week antecedent precipitation, VWC), 
but in contrast to the CV site, this resulted in steadily low O2 concentrations. These findings highlight a discon-
nection between the controls on O2 and O2 dynamics. This suggests that a physical soil wetting process is the 
primary mechanism controlling O2 dynamics at the GM site, and that the prevention of soil pore reaeration, or 
O2 diffusion prevails, thus creating a low O2 environment, regardless of seasonal fluctuations in O2 controls. Our 
results show that relationships between O2 and soil moisture may be reliably predicted by a traditional bivariate 
nonlinear power function at some sites (e.g., our GM site) but a multivariate regression model may be required 
at sites with higher O2 variability (e.g., our CV site). Our findings indicate that the chosen regression approach 
should consider the environment in which the data were collected, and our SOM analysis has identified key 
features to be monitored and considered in such a multivariate regression approach.

The topography, groundwater hydrology, and vegetation characteristics unique to the CV site resulted in seasonal 
VWC fluctuations. For example, low VWC values observed throughout the growing season at the CV site were 

Figure 5. Low O2 self-organizing map (SOM) results for the Champlain Valley (CV) site, including: (a) volumetric 
water content (VWC) time series with dashed line representing mean VWC for the CV low O2 dataset, (b) O2 time series 
highlighted with the five clusters identified by the low O2 SOM, (c) bar plots displaying range normalized intra-cluster 
means of each input variable (n = number of observations per cluster). Clusters that are not shaded (represented by “NA”) 
correspond to O2 values outside of the low O2 range. 2-wk precip., two-week antecedent precipitation.
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likely the result of depleted groundwater levels in combination with high plant water uptake by abundant sedges 
and nettles (water demand), and elevated soil respiration rates (O2 demand). These conditions facilitated O2 
diffusion and reaeration of soil pores, thus restoring soil O2 to near-atmospheric levels. Under dry and warm 
conditions, antecedent precipitation plays an important role in O2 depletion, as soils at the CV site can become 
too dry to displace O2 or block O2 diffusion. The significant impact of antecedent precipitation conditions on 
soil O2 is also highlighted by Silver et al. (1999), who found soil O2 levels at ridge locations to be significantly 
correlated with cumulative 4-week antecedent precipitation.

Low O2 values (n = 7,043) occurred less frequently than high O2 values (n = 12,593) at the CV site, which has 
important implications for nutrient cycling. This finding suggests that the process of O2 depletion requires the 
convergence of a more specific suite of soil conditions than high O2 levels do. Due to seasonal fluctuations in 
the controls on soil O2 at our sites, low O2 values also occurred less frequently (25% of low O2 values) during 
the growing season (generally early May to early October in Vermont), compared to high O2 values (61%). 
Nutrient cycling processes that require anaerobic soil conditions or anaerobic microsites, such as denitrifica-
tion, sulfate reduction, or methanogenesis, will not proceed if the soil environment is well aerated (Sexstone 
et  al.,  1982). Furthermore, the growing season is a critically important time for nutrient sequestration and 
transformation within agricultural watersheds (Wang et al., 2014), as fertilizer is generally applied to agricul-
tural fields in early spring. High soil O2 levels during this critical period for N mobilization could reduce soil 
denitrification rates, which could have detrimental effects on nearby aquatic ecosystems.

4.4. Complications Associated With Predicting Soil O2 Based Solely on Soil Moisture

We asked the question: Which combinations of variables lead to high versus low soil O2? The results of our 
clustering analysis suggest that riparian soil O2 dynamics are controlled by a network of seasonally variable, 
rate-dependent, and location-dependent parameters, and as such, the relationship between O2 and soil moisture 
is more complex than represented by traditional ecological models. In contrast to traditional ecological thought, 
high soil moisture does not always result in low O2 levels, and vice versa. Reliance on these more traditional 
reduction functions would have yielded contrasting results at our two study sites. If we had predicted soil O2 
levels at the CV site solely based on the commonly assumed negative correlation between moisture and O2 
(i.e., VWC values that typically result in low O2; VWC = 0.5–0.6 m 3/m 3), 30.6% of O2 values would have been 
incorrectly predicted as low, and 6.7% would have been incorrectly predicted as high (VWC ≤ 0.4 m 3/m 3). In 
contrast, consistently high VWC observed at the GM site resulted in consistently low O2. Therefore, although 
we did not observe a significant negative correlation between O2 and soil moisture (data not shown), our predic-
tions based on soil moisture conditions alone would have been reasonably accurate at this site.

Our findings have important implications for nutrient cycling models that rely solely on soil moisture meas-
urements to predict soil O2, and for empirical studies that make inferences about soil biogeochemical processes 
based on O2 estimations (Rubol et al., 2012). Soil O2 dynamics strongly modulate the rate and efficiency of 
microbially-mediated soil elemental (e.g., C, N, S) cycling through shifts in redox potential. Incorrect estima-
tions of soil O2 can therefore result in inaccurate predictions of critical N, C, etc., process rates. For example, 
much of the literature involving the measurement of soil O2 and its relationship to soil moisture is within the 
context of climate-change driven shifts in soil moisture regimes and the subsequent effects on C storage and 
soil respiration (O'Connell et al., 2018; Santiago et al., 2005). These changes in C storage are modulated by 
confounding effects of seasonally variable soil moisture and temperature, as well as O2 (Davidson et al., 1998). 
Critical soil biogeochemical processes not only impact watershed nutrient mobilization and downstream water 
quality, but also soil greenhouse gas production. It is therefore imperative to continue to improve our under-
standing of soil O2 dynamics, as they are likely to increase in complexity as we face complications linked to a 
changing climate. Models that incorporate mass balance approaches are a potential alternative to those that rely 
on traditional reduction functions to predict soil O2. For example, Parolari et al. (2021) applied mass balance 
models to power spectra quantified from soil sensor timeseries and found accurate predictability of O2 variabil-
ity using temperature and soil moisture as inputs.

Our analysis uniquely incorporated multivariate data of high temporal resolution, which allowed us to inves-
tigate and provide new insight into the mechanisms controlling O2 dynamics within our study sites. However, 
the limitations of our analysis are highlighted by our spatially constrained dataset, as we included observations 
from one landscape position within two different riparian soil sites of contrasting adjacent land use. Therefore, C

lu
ste

r
O

2 (
%

)
So

il 
te

m
p.

 (°
C

)
V

W
C

 (m
 3 /m

 3 )
CO

2 (
pp

m
)

2-
w

ee
k 

cu
m

ul
at

iv
e 

an
te

ce
de

nt
 p

re
ci

p.
 (c

m
)

C
on

di
tio

ns
Ju

lia
n 

da
te

 ra
ng

es

1
1.

1 a
2.

8 a
0.

59
 a

61
1.

0 a
22

.6
 a

W
et

, l
ow

 C
O

2, 
ea

rly
 w

in
te

r
N

ov
em

be
r–

Ja
nu

ar
y

2
0.

8 b
10

.6
 b

0.
58

 b
86

4.
0 a

64
.5

 b
W

ar
m

, h
ig

h 
pr

ec
ip

.
O

ct
ob

er
–N

ov
em

be
r &

 M
ay

–J
un

e

3
0.

5 c
2.

9 a
0.

60
 c

47
0.

4 a
27

.1
 c

W
et

, l
ow

 C
O

2, 
w

in
te

r/e
ar

ly
 sp

rin
g

Ja
nu

ar
y–

M
ay

4
1.

4 d
15

.3
 c

0.
42

 d
4,

24
7.

5 b
33

.3
 d

D
ry

, w
ar

m
, a

vg
. C

O
2

Ju
ne

5
3.

5 e
17

.6
 d

0.
37

 d
18

,3
78

.9
 c

42
.5

 e
D

ry
, w

ar
m

, h
ig

h 
CO

2
Ju

ne
–J

ul
y

N
ot

e.
 W

ith
in

 th
e 

sa
m

e 
co

lu
m

n,
 d

iff
er

en
t l

et
te

rs
 re

pr
es

en
t s

ig
ni

fic
an

t d
iff

er
en

ce
s b

et
w

ee
n 

cl
us

te
rs

 (p
 <

 0
.0

5)
.

Ta
bl

e 
4 

M
ea

n 
Va

lu
e 

of
 E

ac
h 

In
pu

t V
ar

ia
bl

e 
an

d 
O

2 A
cr

os
s F

iv
e 

C
lu

ste
rs

 Id
en

tif
ie

d 
by

 th
e 

C
ha

m
pl

ai
n 

Va
lle

y 
Lo

w
 O

2 S
el

f-O
rg

an
iz

in
g 

M
ap

 19447973, 2023, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022W

R
034022, W

iley O
nline L

ibrary on [05/02/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Water Resources Research

LANCELLOTTI ET AL.

10.1029/2022WR034022

15 of 18

our results cannot be directly scaled up to predict O2 regimes across more expansive ecosystem scales. It is also 
important to consider how the limited spatial resolution of our dataset (within a given sensor location) impacts 
our ability to assess the suitability of soil conditions for biogeochemical processes that occur in deeper soil 
depths, especially soil denitrification (Groffman et al., 2009).

Furthermore, the inherent spatial heterogeneity of the environmental factors that control soil redox-sensitive 
processes results in hot spots and hot moments of biogeochemical activity, which are very difficult to predict. 
We also note that our sensor network was unable to detect O2 within soil solution, or anaerobic microsites within 
soil aggregates, where hotspots of soil denitrification, for example, can occur (Parkin, 1987). These sources of 
spatial heterogeneity could result in rates of biogeochemical processes that are not reflective of the soil conditions 
measured by our instrumentation.

However, our results provide information about riparian soil O2 dynamics that can be used for larger scale pattern 
analysis. As the factors that control soil O2 were similar across the two sites, the seasonal variability we observed 
in the key O2 controls may also apply to other riparian soil environments located in temperate climates. This 
seasonal O2 framework could be an effective tool as a first pass prediction of whether O2 conditions are conducive 
to aerobic or anaerobic soil processes. However, we also must consider that various site-specific characteristics 

Cluster O2 (%) 2-week TA (°C) VWC (m 3/m 3) 1-week cumulative antecedent precip. (cm) Conditions
Julian date 

ranges

1 0.02 a −5.4 a 0.5 a 6.2 a Wet, cool, low precip. October–
December

2 0 b 17.1 b 0.5 b 15.5 b Dry, warm, low precip. May–
September

3 0 b 17.3 b 0.5 a 44.2 c Wet, warm, high precip. May–October

4 0 b −9.9 c 0.5 c 8.6 d Drier, cool, low precip. January–
February

5 0 b 18.1 d 0.6 d 8.7 d Wet, warm, low precip. May–July

Note. Within the same column, different letters represent significant differences between clusters (p < 0.05).

Table 5 
Inter-Cluster Means of Each Input Variable and O2 Across Five Clusters Identified by the Green Mountains Self-Organizing Map

Figure 6. Self-organizing map (SOM) results for the Green Mountains (GM) site, including: (a) volumetric water content 
(VWC) time series with dashed line representing mean VWC for the GM dataset, (b) O2 time series highlighted with the 
five clusters identified by the GM SOM. Negative O2 values, which were set to zero when fed to the SOM, are included in 
this time series to show O2 variability. (c) Bar plots displaying range normalized intra-cluster means of each input variable 
resulting from the GM SOM (n = number of observations per cluster). 1-wk precip., one-week antecedent precipitation.
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will likely affect water inputs, water demand, and O2 demand in ways that uniquely affect O2 regimes. We posit 
that a fruitful next step would be to conduct comparable analyses that leverage more spatially expansive soil 
sensor networks that include other depths within the biologically active soil profile, as well as across variable 
climate, topographic, hydrologic, and geologic riparian soil environments (e.g., NEON, Critical Zone Observa-
tories, LTER) to improve our understanding of the drivers of soil O2 dynamics and our capacity to systematically 
model soil O2 behavior and associated soil biogeochemical cycles.

It is also important to consider the implications of measuring gas-phase soil pore O2 (measured in this study), 
compared to dissolved O2, especially in the context of biogeochemical process rates. Microbially mediated 
oxidation processes require dissolved-phase O2, whereas other abiotic O2 oxidation processes can occur with 
gas-phase soil pore O2. Gas-phase soil pore O2 may have a more direct impact on abiotic oxidation processes, 
like chemical weathering, photo-oxidation of organic compounds (e.g., lignin) electrochemical oxidation (i.e., 
the transfer electrons between minerals and change oxidation states), and abiotic oxidation of pollutants (e.g., 
heavy metals). However, the role of gas-phase soil pore O2 as a predictor of microbially mediated processes 
is well-established. For example, Smyth et al. (2019) found gas-phase soil pore O2 to be the best predictor for 
soil CH4 fluxes, suggesting the type of soil O2 measured in our study is linked to soil biogeochemical process 
rates. Rubol et al. (2013) also demonstrated the important role of soil pore O2 in predicting rates of dissimilatory 
reduction of nitrate to ammonium. Thus, without labor-intensive methods needed to measure dissolved O2, our 
high frequency, continuous data provide information on the status of O2 in soils, which has implications for both 
abiotic and microbially mediated processes.

5. Conclusions
We used a SOM approach to address key drivers of the spatial and temporal variability exhibited by riparian 
soil O2 levels within the top 15 cm of the soil profile. Our results show that, in contrast to traditional ecologi-
cal assumptions, O2 cannot be accurately predicted based only on an inverse relationship between O2 and soil 
moisture. Further, we found the SOM approach to be useful for identifying drivers of soil O2 at intermediate soil 
moisture levels. However, in inundated soils, where O2 is consistently depleted (i.e., our GM site), the reason-
ing that high soil moisture results in low soil O2 holds true, eliminating the need for a multivariate approach to 
predict soil O2 conditions. Our findings indicate that soil O2 is controlled by a diverse set of seasonally variable 
parameters (antecedent precipitation, soil T, VWC, soil CO2) and location-dependent conditions (topography and 
groundwater hydrology) that interact to result in a complex and nonlinear relationship between O2 and soil mois-
ture. Importantly, our results reveal that increases in soil moisture do not always trigger O2 depletion, indicating 
that process-based ecosystem and denitrification models that rely on soil moisture alone to estimate soil O2 may 
over-estimate denitrification, or other anaerobic process rates (e.g., iron reduction or methanogenesis). A more 
nuanced understanding of soil O2 dynamics would therefore lead to improved predictions of temporal variability 
in redox-controlled nutrient cycling processes.

Data Availability Statement
The high frequency soil sensor data used to assess the relationship between soil moisture and soil oxygen 
(Lancellotti et al., 2021) are available in the Environmental Data Initiative repository under Creative Commons 
license via 10.6073/pasta/f62c630ff7a917eae8d320f8400ad2ec without a registration requirement. The R 
scripts required to perform the Self-Organizing Map (SOM) analysis and visualize the SOM results (Lancellotti 
et  al.,  2022) are available on the Zenodo repository under the Creative Commons license via 10.5281/
zenodo.7271714 at https://doi.org/10.5281/zenodo.7271714 without a registration requirement. The software 
required to perform the analyses presented in this study (R and R studio) are open-source and are available for 
free at https://posit.co/download/rstudio-desktop/.
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