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Scientists' warning on extreme wildfire risks to water supply
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Abstract

2020 is the year of wildfire records. California experienced its three largest fires early in

its fire season. The Pantanal, the largest wetland on the planet, burned over 20% of its

surface. More than 18 million hectares of forest and bushland burned during the 2019–

2020 fire season in Australia, killing 33 people, destroying nearly 2500 homes, and

endangering many endemic species. The direct cost of damages is being counted in

dozens of billion dollars, but the indirect costs on water-related ecosystem services and

benefits could be equally expensive, with impacts lasting for decades. In Australia, the
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extreme precipitation (“200 mm day �1 in several location”) that interrupted the cata-

strophic wildfire season triggered a series of watershed effects from headwaters to

areas downstream. The increased runoff and erosion from burned areas disrupted water

supplies in several locations. These post-fire watershed hazards via source water con-

tamination, flash floods, and mudslides can represent substantial, systemic long-term

risks to drinking water production, aquatic life, and socio-economic activity. Scenarios

similar to the recent event in Australia are now predicted to unfold in the Western USA.

This is a new reality that societies will have to live with as uncharted fire activity, water

crises, and widespread human footprint collide all-around of the world. Therefore, we

advocate for a more proactive approach to wildfire-watershed risk governance in an

effort to advance and protect water security. We also argue that there is no easy solu-

tion to reducing this risk and that investments in both green (i.e., natural) and grey

(i.e., built) infrastructure will be necessary. Further, we propose strategies to combine

modern data analytics with existing tools for use by water and land managers worldwide

to leverage several decades worth of data and knowledge on post-fire hydrology.

K E YWORD S

climate change, extreme events, fire regime restoration, forest ecosystem services, risk
governance, socio-hydrology, water security, watershed protection

1 | WILDFIRE RISKS TO WATER SECURITY

The 2019–2020 wildfire season in Australia was unprecedented in

recorded history (Boer et al., 2020), burning several catchments supply-

ing drinking water to the 5.5 million Sydney's inhabitants (Box 1) and

threatening many aquatic species with extinction (Pittock, 2020). Simi-

larly, the 2020 wildfires in the Western US, the greatest recorded annual

area burned in the country (4.2 million hectares1), caused dozens of mil-

lions in damages to water distribution systems (Walton, 2020) and trig-

gered widespread debris-flow warnings.2 In both countries, heavy

rainfall eventually stopped fire spread, but triggered extensive runoff,

erosion, and mass movements degrading source water quality and avail-

ability, potentially for decades to come (Hanscombe, 2020; Hohner

et al., 2019; Niemeyer et al., 2020; Robinne, 2020).

Australia and Western US extreme wildfire events, among many

others, were directly linked to persistent drought and record-breaking

temperatures (Harris & Lucas, 2019; van Oldenborgh et al., 2020). As the

climate becomes increasingly hotter and drier and human activities con-

tinue to expand, threats to water security will become more prevalent

(AghaKouchak et al., 2018; Hallema et al., 2018; Robinne et al., 2018).

The growing overlap of extreme hydroclimatic events and expan-

ding human activities makes water crises more likely (Franco, 2020).

Climate warming is leading to greater fire danger, including in regions

where fire was previously uncommon (Flannigan et al., 2013;

Higuera & Abatzoglou, 2021; Shukla et al., 2019). Indeed, warmer

temperatures often lead to drier fuels in which fires can ignite sooner,

spread further, and burn more intensely (Flannigan et al., 2016). In

rainforests and wetlands, where wet conditions usually slow or stop

the spread of fires, unusually dry conditions will lead to destructive

fires impacting surface waters with sediment, carbon compounds, and

toxic metals (Abraham et al., 2017; Granath et al., 2016). Hence,

wildfire-watershed risks (WWR) represent a global challenge that

must be addressed through proactive forest and water governance,

starting with identification of areas at risk. We must then strategically

apply innovative risk reduction strategies to address long-term, large-

scale impacts from catastrophic wildfires in source watersheds (Abadi

et al., 2016; Kinoshita et al., 2016).

Building on the second World Scientists' Warning to Humanity

(Ripple et al., 2017), we argue that scientists, NGOs, water providers,

watershed managers, fire managers, policy-makers, and citizens share

the responsibility to collect, share, and use knowledge of WWR to

develop sustainable environmental policies. In this commentary, we

explain the systemic nature of these risks, illustrating the need for

regionally adaptive and proactive WWR governance. We also briefly

review existing alternatives to WWR management, and we provide

examples of forward-thinking governance schemes in at-risk

locations.

Box 1 2019–2020 fire extent, severity, and post-fire ero-

sion in municipal watersheds of New South Wales and

Australian Capital Territory (Figure 1).

New South Wales was the epicentre of the 2019–2020

extreme wildfire season, experiencing 445 fires, burning

�5.8-million hectares. The yearly average from 1989 to

2019 was 300 fires burning �180 000 hectares, with a
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maximum area burned of 1.7 million hectares (computed

from NSW historical fire database, see Data S1). Compared

to the long-term average, in 2019–2020 there were

�1.5-times more fires, which burned 32-times greater area.

Most concerning, the wildfires affected source watersheds

that supply drinking water for 5.5-million people, including

25 catchments supplying Sydney and six catchments supply-

ing Australia's capital city Canberra. In total, 46 of 78 (59%)

water supply catchments burned to varying extents (14 over

50%) (see Data S1). Several townships had to restrict water

consumption through boil water advisories and no-

consumption advisories. These restrictions were due, in

part, to direct damage to water treatment and distribution

infrastructures and to power grid damage leading to shut-

down of water treatment facilities. As a result, the

Australian Government pledged to commit $88.1-million

AUD to create a national disaster research centre

(Australian Government, Department of Industry, Science,

Energy, and Resource, 2020).

2 | CATASTROPHIC WILDFIRES AS SOCIO-
HYDROLOGICAL EXTREMES

Anthropogenic development has long affected the occurrence and

magnitude of wildfires, droughts, and floods. These are not “true” nat-
ural hazards anymore: in many regions, most wildfires are human-cau-

sed, often fed by excessive fuel availability resulting from past fire

exclusion efforts (Pereira et al., 2019). Intensive human water use has

concurrently increased the magnitude of droughts in water-scarce

regions, such as California (AghaKouchak et al., 2015), and many

megacities struggle to meet growing water demand (McDonald

et al., 2014). Comparatively, communities with budgetary constraints,

endemic poverty, gender issues, and systemic racism are likely to be

disproportionately impacted by water supply impairment

(Cross, 2001; Davies et al., 2018). Hence, urban water supply is

increasingly vulnerable to disruption caused by wildfires (Balch

et al., 2020; Keys et al., 2019) (Box 2).

WWR is inherently systemic (Deere et al., 2017): fire is a source

of socio-hydrological extreme, whereby the dynamic interactions and

dependencies between upstream source water and downstream

water demand can be disrupted due to (a) exceptional wildfire magni-

tude, (b) vulnerability of water supply infrastructure, and (c) lack of risk

governance (Di Baldassarre et al., 2018). Seeing fire as a socio-

hydrological extreme allows spatial–temporal modelling of negative

wildfire impacts on water resources and the influence of WWR reduc-

tion efforts within the larger challenges of watershed management.

Water resource managers are able to test various disaster risk scenar-

ios and adjust to envisioned consequences of future wildfires—ex

ante—and to the actual consequences of past wildfires—ex post

(Linton & Budds, 2014). Therefore, water security and forest manage-

ment are intrinsically linked; differing coping capacities of socio-

hydrosystems around the world will, however, lead to different WWR

governance regimes (Di Baldassarre et al., 2013; Fischer et al., 2016;

Kumar, 2015; Srinivasan et al., 2012).

Box 2 Global wildfire-watershed risk hotspots

Wildfire-watershed risk hotspots are locations where

water supplies and communities are susceptible to wildfire

effects, such as waterworks damages (e.g., water supply

infrastructure and reservoirs), loss of ecosystem services

(e.g., hydropower outage, fisheries collapse), degradation of

aquatic biodiversity, and potential loss of life (Dilley

et al., 2005; United Nations Office for Disaster Risk

Reduction, 2009) (Figure 2).

Examples of global wildfire-watershed risk hotspots

(with extreme wildfire years) include regions with:

Humid to sub-humid continental climate (i.e., temperate

and boreal forests): Fennoscandia (2015 wildfires), Western

Canada (2016–2019), Siberia (2019). The 2016 Horse River

Fire in Fort McMurray, Canada, caused �$9 M in additional

water treatment expenditures (Pomeroy et al., 2019).

Semi-arid climate: Western US (2002, 2011, 2016), Iran

(2020). In 2002, the Hayman Fire in Colorado impacted

Denver's water supplies, resulting in $60 M in expenditures

for reservoir dredging (Bladon et al., 2014). In 2020, an

unusual fire season burned 50 000 ha in the Zagros moun-

tains of Iran; these mountains are critical for downstream

water supply (Kheshti, 2020).

Temperate oceanic climate: Australia (2003, 2009,

2020), Chile (2017). In 2017 in Chile, drought and poor

water distribution limited firefighting capacities, disrupting

water supply to millions in Chile's capital Santiago.

Mediterranean climate: Western US (2013, 2018),

Canada (2003), South Africa (2017), Greece (2018), Portugal

(2017). In California, the 2013 Rim Fire threatened the

Hetch-Hetchy reservoir supplying water to San Francisco.

The same year in Viseu, Portugal, water was diverted for

firefighting, disrupting water supply for 100 000 people;

water supply from several water treatment plants became

limited for months due to water contamination with ash. In

2018, the post-fire Montecito, California mudslide killed

23 persons and cost hundreds of millions in damages (Kean

et al., 2019).

Warm humid (sub)tropical climates: Brazil (2019), Indo-

nesia (2015, 2019), India (2016). News reports on reduced

post-fire water quality in these regions are available, but

detailed documentation of fire impacts on water resources

is difficult to obtain or unavailable.

ROBINNE ET AL. 3 of 11
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2.1 | Wildfire-watershed risk governance

Stakeholders hold different degrees of risk knowledge, perception,

and tolerance to risk (Klinke & Renn, 2012); WWR governance can

account for these varying risk cultures. Effective WWR governance

must also account for the compound effects of catastrophic wildfires,

water supply vulnerabilities, and ecological, social, and economic

stresses that can cascade towards socio-hydrosystem collapse

(Figure 3) (Balch et al., 2020; United Nations Office for Disaster Risk

Reduction, 2019; van Asselt & Renn, 2011).

Community and water assets that are vulnerable to wildfire often

display different risk profiles due, for instance, to different wildfire

regimes. As such, post-fire outcomes for the US and Australia do not

directly apply to Chile, India, or Canada (Nunes et al., 2018). Socio-

economic development, land-use history, public health, and relation-

ships to water also often diverge (Linton & Budds, 2014; Miller

F IGURE 1 Estimated burn severity and estimated erosion in New South Wales and Australia Capital Territory. Panel (a): Wildfire severity
values derived from very-high resolution Sentinel-2 satellite imagery using the fire extent and severity mapping algorithm from the Department
of Planning, industry and environment (see Data S1). Panel (b): Estimated hillslope erosion values for the month of February 2020 calculated using
the revised universal soil loss equation (RUSLE) model (see Data S1). Estimated erosion rates were higher for high burn severity. Municipal
watersheds supply drinking water to Sydney and Canberra, among other communities. Data from: https://www.environment.nsw.gov.au/,
https://www.seed.nsw.gov.au/, and https://data.nsw.gov.au/data/dataset
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et al., 2017; Murphy et al., 2020). Given the social-ecological complex-

ity involved, advancing WWR governance requires synthesis of

knowledge among hydrologists, wildfire scientists, citizens, water pro-

viders, land managers, and various levels of governments responsible

for watershed planning (Clark et al., 2016; Ostrom, 1996; Wheater &

Gober, 2015; Parkes et al., 2010).

Understanding and embedding contextual factors is one major chal-

lenge in the development of locally-relevant decision-support tools for

WWR governance (Blair & Buytaert, 2016; Hallema et al., 2019; Paté-

Cornell, 2012; Ruckelshaus et al., 2015). Parameterizing and adapting

such tools rely heavily on data availability (Fischer et al., 2016;

Kumar, 2015). Reliable hydrological data from fire-impacted areas is

hard to obtain even in economically developed countries, due to the dif-

ficulties inherent to predicting future fire activity and limited available

research funds to deploy and maintain hydrological monitoring net-

works. Where data exist, there may be restrictive access policies and

data inconsistencies. Risk governance, based on a collaborative

approach to knowledge production, will help gather missing information

towards the reduction of socio-hydrosystems' vulnerability, leading to

more relevant and accurate WWR-reduction tools as a result (Canning

et al., 2020; Hallema et al., 2018; Lowndes et al., 2017; Thompson

et al., 2019; Wheater & Gober, 2015).

Even so, it may never be possible to exactly predict WWR

(Gannon et al., 2019; O. D. Jones et al., 2014). Therefore, investing in

risk prevention and literacy, as well as stakeholder preparedness

through transparent communication, will help devise locally appropri-

ate responses towards risk reduction (Boisramé et al., 2019; Kinoshita

et al., 2016; McWethy et al., 2019). Working this way will help reach

consensus towards the definition of regional risk profiles warranting

tailored watershed policies for successful risk management; such ini-

tiatives will also facilitate the social acceptability of risk and of the

actions aiming at its reduction (Blair & Buytaert, 2016; Hamilton

et al., 2019; Wheater & Gober, 2015).

3 | BEYOND FIREFIGHTING

Appropriate forest management maintains natural water storage

and increase drought resistance, while reducing the negative

impacts of unwanted fires in source watersheds (Boisramé

et al., 2019; van Wagtendonk, 2007). Active forest management,

including mechanical thinning and prescribed burning, can be effec-

tive at reducing fuel loads and mitigating wildfire effects (Gannon

et al., 2019; K. W. Jones et al., 2017; Lydersen et al., 2017).

F IGURE 2 Existing and emerging global wildfire-watershed risk hotspots. (a) Water-stressed watersheds (i.e., annual water withdrawal
exceeds annual water supply, see Data S1) with a median wildfire-watershed risk index >24 (n = 8280) (Robinne et al., 2018). (b) Occurrence of
extreme wildfire events recorded between 2002 to 2013 (n = 478; Bowman et al., 2017). (c) Cities (n = 252) that declared current and expected
water supply challenges linked to decreasing water quantity, decreasing water quality, and/or increasing water demand (see Data S1)
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However, fuel management alone is not a panacea due to large-

scale spatial, technical, and financial constraints (K. W. Jones

et al., 2017; North, Brough, et al., 2015; Price & Bradstock, 2012).

The return on investment of fuel treatment also is variable (Gannon

et al., 2019; K. W. Jones et al., 2017), suggesting that complemen-

tary investments in other elements of the WWR value chain are

necessary (Figure 3).

Watershed restoration offers such a complementary solution. For

instance, regions where fire suppression turned historically open tree-

savannas into dense closed-canopy forests, ecosystem water use

increased significantly due to increased evapotranspiration (Boisramé

et al., 2019; Roche et al., 2018), leading to reduced streamflow. Safely

using naturally-occurring wildfires to restore overstocked source

watersheds can increase water security by reducing the likelihood of

F IGURE 3 Risk governance in the wildfire-watershed value chain. Wildfire-watershed risks are recognized through the identification of
interactions between upstream wildfire hazard (i.e., likelihood of a wildfire event of a given, potentially harmful, magnitude), watershed
vulnerability, and downstream water security. After identification of water security vulnerabilities and their social and economic consequences,
effective wildfire-watershed risk governance will offer a set of options to deal with existing at-risk situations. Rapid, slow, and prolonged onset
drivers refer to the speed and depth at which changes in fire and forest management can occur: Rapid onset drivers can be acted upon quickly
and have immediate effects (e.g., biomass reduction), while slow onset drivers are deeply ingrained and affect fire activity on the long term, even
after changes have been made (e.g., fire exclusion policies). Icons made by Freepik and Eucalip
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extreme fire events while simultaneously increasing streamflow and

subsurface water storage (Boisramé et al., 2019; Roche et al., 2018);

this option must, however, be carefully reviewed, as water demand

from post-fire regrowth can offset gains in water availability

(Brookhouse et al., 2013; Niemeyer et al., 2020).

Degradation of wetlands and their biodiversity worldwide has led

to a greater occurrence of wildfires, particularly in peat landscapes

(Turetsky et al., 2015; Wilkinson et al., 2018). Restoring wetlands, bio-

diversity, and natural fire regimes where the ecosystems have co-

evolved with fire will help maintain the water table closer to the sur-

face, keeping water in the landscape, preventing extreme fires, regu-

lating water flows, and enhancing water quality (Fairfax &

Whittle, 2020; Granath et al., 2016; Wilkinson et al., 2018).

Upfront investments in wildfire prevention, biomass reduction,

and watershed restoration are more successful and cost-effective

than firefighting and post-fire slope stabilization (North, Stephens,

et al., 2015). Simultaneously improving watershed health and water

supply infrastructures will reduce vulnerability (Box 3). Likewise, pay-

ments for ecosystem services schemes, whereby downstream com-

munities financially support the protection of forested headwaters,

are gaining traction (UNECE and FAO, 2018). There is, however, no

easy solution: WWR mitigation must rely on a combination of grey

(e.g., infrastructure retrofitting) and green infrastructures

(e.g., watershed restoration) adapted to current and projected risk

levels.

Box 3 Building on existing WWR governance

The following locations where WWR has been identi-

fied are proactively dealing with wildfires and their

consequences.

Melbourne, Victoria, Australia: Melbourne relies on for-

ested catchments for 80% of its water supply, in which

Eucalyptus forests are highly flammable. The terrain is steep

and prone to high hillslope erosion rates post-fire, leading to

sediment loads >100 times greater than normal. Water

entering treatment facilities is unfiltered, therefore small

changes in colour and turbidity significantly impact disinfec-

tion efficacy and drinking water quality. Modelling indicates

a large wildfire in the Upper Yarra Reservoir could result in

water being untreatable for a year or more. Although desali-

nated water is available, it is expensive and cannot meet

demand should the major water supply catchment go offline

due to fire-caused contamination. Thus, Melbourne Water

has invested millions in research programs to inform fuel

reduction, firefighting efforts, and post-fire response

(Canning et al., 2020).

Sydney, New South Wales, Australia: The extensive

2019–2020 wildfires burned 35% of Sydney's largest water

supply catchment, Warragamba. In 2019, the Greenwattle

Creek fire was followed by intense rainfall exceeding

200 mm in one day, resulting in substantial ash and sedi-

ment transfer into the water storage, Lake Burragorang.

Hence, Sydney Water led risk mitigation efforts—ash, sedi-

ment, and contaminant transfer modelling into the lake; sed-

iment plume monitoring; water quality monitoring. The

vertically flexible design of the offtake at the dam wall

enabled water to be extracted from outside of the plume

zone (Canning et al., 2020).

Denver, Colorado, USA: The Upper South Platte water-

shed (�6900 km2) provides 80% of the municipal water

supply. Denver Water delivers water to 1.4-million cus-

tomers. After wildfires impacted water supply and distribu-

tion in the 1990s, multi-stakeholder partnerships were

started to plan and implement watershed-scale wildfire risk

assessments, fuel reduction, and ecosystem restoration. The

Upper South Platte provides an example of watershed

investment programs, or payment for ecosystem services

focused on wildfire risk reduction for the protection of

water supplies. Through the US Forest Service Forests to

Faucets program, Denver Water invested $16.5-million,

partly covered by a $27 fee charged to each household

served by the utility. In the first five years of the program,

wildfire mitigation measures were applied to over 470 000

hectares in the watershed.

Fort Collins, Colorado, USA: Following the 2012 High

Park fire in the source watershed of Fort Collins, the munici-

pality closed the river water intake and relied on a second-

ary reservoir. The installation of an in-stream turbidity

sensor expanded upstream monitoring and provided an

early warning system for water treatment operators;

unusual turbidity signals triggered intake pipeline shut

down, protecting conveyance infrastructure from destruc-

tive debris flows and sediment overloads. Additionally, the

municipality constructed a pre-sedimentation basin to

dampen the effects of post-fire turbidity loads on treatment

process performance. Collectively, these measures allowed

for continuous delivery of safe drinking water. Fifteen part-

ner organizations are now working together towards forest

restoration in upstream watersheds through the Northern

Front Range Collaborative Watershed Resilience Project. In

2020, the municipal water supply was again threatened by

the Cameron Peak Fire, which burned �85 000 hectares in

the Poudre River watershed and triggered water

restrictions.3

Manchester, United Kingdom: The 2018 Saddleworth

Moor wildfire was one of England's largest in recorded his-

tory, burning over 18 km2 of upland terrain that supplies the

greater Manchester area with drinking water and has ele-

vated heavy metal concentrations from past industrial activ-

ity. The water supplier, United Utilities, acted promptly in

collaboration with scientists, treating burned hillslopes and

gullies with biodegradable erosion prevention measures.
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This also prompted modelling contamination potential from

future fires in unburned catchments in this region for future

risk mitigation.

Lisbon, Portugal: Fires in 2013 and 2017 threatened

water supplies of Lisbon, Portugal, managed by Empresa

Portuguesa das �Aguas Livres. After 2013, an additional

water treatment line was built to address potential short-

term water quality issues. After 2017, key parts of the

watersheds received emergency slope stabilization. Ongoing

monitoring and numerical modelling efforts will help better

assess WWR and evaluate the cost-effectiveness of pre-fire

watershed management, post-fire slope intervention, and

water treatment measures.

Western Cape Province, Republic of South Africa: The

“Working for Water programme” focuses on invasive alien

vegetation clearing for water provision. It directly links to

wildfire risk management as many invasive species (e.g., the

tree species Acacia mearnsii) increase fuel loads and connec-

tivity, allowing fire to spread into riparian zones at higher

rates and severity. This poses a threat for water quality and

freshwater ecosystem health as it degrades bank stability

and increases erosion, leading to excess sediment and ash

delivery into streams. This case exemplifies the enhance-

ment of positive feedbacks between ecological perturba-

tions (invasive species and wildfire) in the current context of

global change. A standard practice within this program is the

creation of firebreaks to reduce wildfire risk.

4 | CONCLUSION

Planning for a future where watershed response to wildfire are highly

non-stationary will be challenging (O'Connor et al., 2017). Stake-

holders involved in water security must actively seek a better

socio-hydrological understanding of existing wildfire hazards in their

water-supply areas. Research and management efforts are particularly

urgent in areas where WWR are emerging and where wildfire and

hydrological sciences remain underfunded. To this end, advancing

WWR governance will promote collaboration and knowledge transfer,

prevention, and preparedness to face extreme wildfire events and cas-

cading disastrous consequences on water ecosystem services, like

those experienced in Australia, Western North America, and else-

where (Khan et al., 2015; Martin, 2016; McWethy et al., 2019;

Robinne et al., 2018).
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