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A B S T R A C T

Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire sup-
pression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-
suppression forest composition and structure through a variety of management activities could improve forest
resilience and water yields. This study explores the potential for “managed wildfire”, whereby naturally ignited
fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its
long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic
indicator to assess the influence of vegetation, fire history and landscape position on water availability in the
Illilouette Creek Basin in Yosemite National Park.

Over 6000 manual surface soil moisture measurements were made over a period of three years, and sup-
plemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and
linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on
measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture
observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-aver-
aged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases
in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.

1. Introduction

The importance of forested montane watersheds for water supply in
many regions worldwide has long raised the question of whether forest
management could be used to enhance water yields (Baker, 1986;
Hawthorne et al., 2013; Hibbert, 1965; Kattelmann et al., 1983; Lesch
and Scott, 1997; Troendle, 1983). More recently, the potential for such
management actions to improve forest health and productivity in fire-
suppressed forests has raised the prospect of a “win-win” scenario for
ecology and water supply. Fire suppression has led to unnaturally dense
forests in many parts of the world, including California’s Sierra Nevada
(Collins et al., 2011; McIntyre et al., 2015). Forest management that
reduces tree density could increase growth rates of the remaining trees
(Bréda et al., 1995; Ruprecht and Stoneman, 1993), reduce competition
between trees for scarce resources (Grant et al., 2013), and reduce the
potential for catastrophic wildfire (Aust and Blinn, 2004; Kauffman,
2004; Pollet and Omi, 2002), thus improving forest resilience. In turn,
reduced water demand in thinned forests can result in higher water
availability downstream, and increasing non-forested wetland area can

increase a watershed’s capacity for water storage (Dubé et al., 1995;
Fletcher et al., 2014). Soil moisture is a hydrologic variable that in-
tegrates all of these processes, as subsurface stores provide a source of
water for both vegetation needs and streamflow generation, and
changing soil moisture reflects changes in local water balance.

The hydrologic impacts of forest management practices are highly
uncertain; scientific studies are limited and have mixed results. For
example, observed flow increases following forest thinning range from
as little as 1% to 70% (Kattelmann et al., 1983; Lesch and Scott, 1997).
Differences in outcome appear to depend on many factors including the
specifics of the forest treatment, local topography, vegetation type, and
weather (Baker, 1986; Hawthorne et al., 2013). Problematically, in-
creases in water yield typically persist for only ≈ 5 years following
forest treatments (Brown et al., 2005), suggesting that frequent re-
treatment would be needed to sustain water supply benefits. Such high
frequencies may impose important feasibility constraints on the im-
plementation of labor-intensive management efforts. Conventional
forest management practices such as thinning, clearing, or prescribed
fire, may also be difficult to upscale to the point where they can have
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meaningful impacts on water resources. Thus, identifying alternative
and scalable forest management strategies would be attractive.

Managed wildfire may offer such an approach. Under this man-
agement strategy, naturally ignited fires are allowed to burn, provided a
fire management plan is identified and clear conditions for fire opera-
tions are in place (e.g. to prevent air quality impacts or protect sensitive
areas). The fire-return interval in many fire-prone mountain watersheds
is relatively short (e.g. ≈ 7–15 years in the mid-pine belt in
the Sierra Nevada, Collins and Stephens, 2007), meaning that this ap-
proach can alter the understory and ground litter (Collins et al., 2016;
Stephens et al., 2009), reduce forest density and leaf area (Kane et al.,
2014), and replace land cover (Boisramé et al., 2017a) on timescales
commensurate with those of hydrologic recovery from such dis-
turbance.

Managed wildfire policies have been implemented long-term in only
a few watersheds. In these locations, they are associated with large-
scale reductions in forest cover and density over multi-decadal time-
scales (Boisramé et al., 2017b; Kane et al., 2014). These changes may
have reduced the extent of severe fires (Collins and Stephens, 2007),
lowered drought-induced forest mortality relative to neighboring basins
(Boisramé et al., 2017a), and increased the biodiversity of pollinating
insects (Ponisio et al., 2016). These positive outcomes support the po-
tential for managed wildfire to mimic some of the landscape-scale
benefits of thinning or patch-felling at large scales and at relatively
frequent intervals, without requiring mechanized harvest and the as-
sociated costs, labor, and soil disturbance. To date, however, the hy-
drologic impacts of managed wildfire are poorly understood. The basins
with long-term managed wildfire regimes lack long term stream gauges
and baseline (i.e. pre-treatment) hydrologic measurements. The study
watershed considered here, the Illilouette Creek Basin (ICB), is gauged
after its confluence with the larger Upper Merced River. While there
may be a small signal of enhanced streamflow production at this gauge
following the institution of the managed wildfire regime in the ICB in
1972 (Boisramé et al., 2017a), analysis of flow trends offers little in-
sight into the effects of the fire regime on basin hydrology (both due to
uncertainty caused by high interannual variability in flows, and the
basin-aggregated nature of streamflow). Soil moisture provides a useful
metric for observing sub-watershed scale hydrology, representing the
local balance between precipitation, deep drainage, evapotranspiration,
and discharge.

Soil moisture dynamics in a burned watershed are altered by a
complex suite of hydrologically relevant processes initiated by wildfire
(Brown et al., 2005). For instance, burning can have counteractive ef-
fects on the amount and timing of snowmelt inputs to groundwater
stores: blackened trees provide a source of long-wave radiation, and
canopy losses reduce shading, speeding melting and sublimation rates
(Neary et al., 2005; Tague and Dugger, 2010), but canopy losses also
reduce interception and can reduce long-wave radiation, enhancing
snowpack accumulation and delaying snowmelt compared to dense
forest (Ellis et al., 2013; Lundquist et al., 2013). Similarly, although loss
of mature trees can reduce transpiration (Bréda et al., 1995; He et al.,
2013; Ma et al., 2010; Rambo and North, 2009; Zhang et al., 2001), loss
of shading can increase soil evaporation (Biederman et al., 2014) while
regrowth of understory vegetation or young life-stages can increase
water demand, reducing soil moisture levels (Lane et al., 2010; Neary
et al., 2005; Tague and Dugger, 2010; Vertessy et al., 1995; 2001). Most
literature regarding fire-effects on watershed hydrologic balance fo-
cuses on large individual fires (Helvey, 1980; Langford, 1976, e.g.), or
individual clearing/thinning treatments (Brown et al., 2005), rather
than the long-term effects of cumulative vegetation change. Thus, the
net hydrologic impact of managed wildfire over many decades and at
basin scales remains uncertain.

The Illilouette Creek Basin is one of two basins in California (four in
the western United States) where a managed wildfire regime has been
in place for multiple decades. It holds wilderness status, meaning that
soil and surface hydrology are relatively undisturbed by humans.

Although no direct observations of change in the basin hydrology
during the institution of the managed wildfire regime are available
(there are no data for soil moisture, streamflow, or weather within the
ICB dating from its fire suppressed state), fire effects on vegetation
cover in the ICB have been reconstructed from air photo records
(Boisramé et al., 2017b). These reconstructions show that between
1970 (when the basin was still fire-suppressed) and 2012 the watershed
lost 24% of its conifer cover, while dense meadow area increased by
155%, shrub area by 35%, and sparse meadow area by 199% (Boisramé
et al., 2017b).

The type of vegetation growing at a location is frequently correlated
with local hydrological conditions (e.g. Araya et al., 2011;
Milledge et al., 2013; Mountford and Chapman, 1993). For example,
lodgepole pine (Pinus contorta, PICO), a common species in ICB, es-
tablishes in intermediately wet areas of meadows (Helms and
Ratliff, 1987), while whitethorn ceanothus (Ceanothus cordulatus) grows
in exposed, dry sites (Fites-Kaufman et al., 2007). Within the ICB,
Kane et al. (2015) found relationships between water balance and forest
structure, suggesting that vegetation observations can be related to
water availability, and the history of vegetation change in the basin
could therefore provide a proxy history of hydrologic changes. In this
study we use soil moisture to represent these hydrologic changes, since
it integrates shallow hydrologic fluxes and therefore is a useful spa-
tially-explicit indicator of water budget partitioning. Reconstructing
hydrologic change (as represented by changing soil moisture) using
vegetation is undoubtedly an approximate method, but it overcomes
major limitations of other approaches such as remote sensing of soil-
moisture related indices (Musick and Pelletier, 1988), which are pre-
cluded in areas with dense vegetation cover (Crist and Cicone, 1984),
and thus cannot be used to examine the effects of transitions from
forested to unforested sites.

This study aims to identify the effect of the changing fire regime on
water availability in the ICB by measuring surface soil moisture, es-
tablishing its dependence on vegetation, fire history and topography,
and using these relationships to extrapolate soil moisture observations
to the basin scale under contemporary and historic vegetation dis-
tributions. Differences in these basin-scale soil moisture surfaces would
then provide an estimate of the change in soil moisture following the
change in fire management. In order to justify this modeling approach,
we first answer the following questions:

• Is surface soil moisture a useful indicator of ecologically-relevant
water storage (as might be influenced by, or might influence, local
vegetation)?

• Is vegetation a useful indicator of surface soil moisture values?

• Under a given vegetation type, can topography and fire history ex-
plain spatial variations in soil moisture?

Ideally, we would estimate total soil water storage using continuous
moisture measurements over the depth of the soil profile at many lo-
cations. This would give the most complete measure of the balance
between precipitation, evapotranspiration, and runoff. However, wild-
erness regulations (U.S. Congress, 1964) limited such observations
(which require disturbance of the soil profile and installation of tem-
porary instrumentation) to three sites in the ICB. Therefore we relied
primarily on spatially extensive but shallow (top 12 cm) soil moisture
measurements (> 6000 in 90 sites) made twice annually over three
consecutive growing seasons (2014 through 2016). Although surface
soil moisture cannot be directly extrapolated to subsurface water sto-
rage, it is often closely related to water table depth (Sörensen et al.,
2006) and plant available water (Gonzalez-Zamora et al., 2016). All
observations were made during drought years of varying characteristics
and severity (from extreme drought in 2014–2015 to near-normal
winter precipitation in 2015–2016) and therefore do not necessarily
apply to wet years. The observations were made at least nine years after
the most recent large fire in the ICB and do not capture short-term post-
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fire soil moisture responses.

2. Materials and Methods

2.1. Study Site

The Illilouette Creek Basin (ICB) is a 150 km2 basin within the
Upper Merced Watershed in Yosemite National Park, California, USA
(Fig. 1), spanning an 1800 m to ≈ 3000 m elevation range in the
central Sierra Nevada. This area experiences a Mediterranean-type cli-
mate, with average January daily minimum temperatures ranging from
− ∘5 C to 1°C, and average July daily maximum temperatures of ≈ 25°C
(2000–2015; http://www.wrcc.dri.edu ; stations: White Wolf, Crane
Flat). Average annual precipitation (Oct-Sep) ranged from 47 to 60 cm
(2000-2015), dominated by winter snow. The basin is covered by
coniferous forests (dominated by Jeffrey pine, Pinus jeffreyi, red fir,
Abies magnifica, white fir, Abies concolor, and P. contorta), granite out-
crops, meadows and shrublands (dominated by whitethorn ceanothus,
C. cordulatus) (Collins et al., 2007). The area never experienced timber
harvesting and likely had minimal impacts from livestock grazing
(Collins and Stephens, 2007).

Fire suppression began in the ICB in the late 19th century, at a time
when fire suppression was becoming common practice in many U.S.
forests (Collins and Stephens, 2007), and the total area burned between
1880 and 1973 was only 0.08 km2. In 1972 the ICB transitioned to a
managed wildfire policy (van Wagtendonk, 2007), resulting in a new
fire regime with very similar fire frequency and extent to those inferred
by tree ring analysis from the pre-suppression period (contemporary
mean fire return intervals are 6.8 years, compared to a 6.3 year mean
from 1700 to 1900) (Collins and Stephens, 2007). During the managed
wildfire period, 30 fires exceeding 40 ha extent burned in the ICB,
forming a mosaic of vegetation change, where high severity burn pat-
ches intermix with intact forests (Collins and Stephens, 2010, Fig. 2),
and leading to a large range in time-since-last-fire and vegetation
condition across the basin. Seventy-five percent of the vegetated area,
and 52% of the total basin area have burned since 1972.

2.2. Field measurements

Surface soil moisture was mapped in the ICB in the summers of
2014–2016. A total of 6220 measurements were made in 90 sites,
covering representative combinations of burn severity, time since fire,
slope, aspect, elevation, and vegetation cover (Fig. 1, Table A.1).
Thirty-seven sites were selected to overlap with established research
plots (Collins et al., 2016). Fifty-three new sites were selected to re-
present combinations of slope, aspect, burn severity, and vegetation
cover omitted in the previous plots. Locations for most of these new
sites were selected by identifying desired combinations of traits in
ArcGIS (http://www.arcgis.com), constraining locations to those ac-
cessible by foot, and sampling randomly within the identified areas;

Fig. 1. Locations of soil moisture measurement
sites and all fires since 1970. Imagery source:
Esri.

Fig. 2. Photo of a burned study site. Dense shade-intolerant and drought-intolerant un-
derstory is growing in a burned area that was once densely forested, adjacent to an intact
mature upper montane mixed conifer forest.
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twelve of the new locations were chosen opportunistically once in the
field.

The volumetric water content (VWC) of soils was measured by in-
serting a 12 cm time-domain reflectomer (TDR) Hydrosense II probe
vertically into the surface soils, having first removed leaf litter or duff.
Given the high degree of homogeneity amongst the granitic loamy
sands in the ICB a mineral-soil calibration, which typically has a 3%
accuracy (Campbell Scientific, 2015), was used for all sites, in
common with other large-scale surface soil moisture studies
(e.g. Famiglietti et al., 2008). The TDR measurements for all sites gave
reasonable values compared to qualitative estimates of soil moisture
based on feel and appearance of the soil. Some organic wetland soils are
present in the basin. Although the TDR was not recalibrated for these
soils, maximum errors in VWC associated with TDR measurements in
organic soils are reported as 0.05 (Roth et al., 1992), much smaller than
typical differences in moisture between wetland and mineral soil sites.
Consistency of measurements between handheld instruments was ver-
ified throughout the 3 field seasons. Handheld instruments were also
verified against the continuously measuring TDRs from three vertical
arrays (see below).

Soil moisture was measured at each site one to six times during early
and late summer (when possible). Early summer measurements were
made between May 21 and June 17 and late summer measurements
between July 17 and August 9. Fifty-five sites were measured at least
twice (e.g. early and late summer measurements in one year), 27 sites
were measured at least four times, and seven sites were measured six
times (both early and late summer measurements in all three years).
Sites with highly variable soil moisture through time were high prio-
rities for multiple measurements. Conversely, only a subset of sites
exhibiting very dry early summer soil moisture (e.g. VWC≤ 0.05) were
re-measured in late summer, under the rationale that moisture condi-
tions would remain similar across the dry summer months. We avoided
taking measurements during or immediately following heavy rainfall,
though a small number of measurements did occur within one day of
precipitation. Both our continuously measuring soil moisture sensors
(see below) and a subset of manual measurements taken before and
after rainfall verified that individual summer storms affected surface
soil moisture by a negligible amount compared to seasonal changes.

In most sites 30 evenly spaced soil moisture measurements (25 for
repeat measures in homogeneous sites) were made within a 30m by
30m grid. Additional measurements were made in heterogeneous sites.
One meter spaced measurements were made across a 30 m transect in
sites with obvious strong gradients in soil moisture (e.g. wetland sites
bordered by dry uplands). The standard error of the per-site mean VWC
(over 25–30 measurements) averaged 0.01 (max of 0.07). Standard
errors were ≤ 10% of the mean in 56% of sites and ≤ 20% of the mean
in 90% of sites.

At each site, dominant vegetation cover (to species level when
possible), slope, aspect, and the presence of burned snags or fire scarred
trees were recorded. Sites were georeferenced using handheld Garmin
GPSMAP 62st and 64st devices (horizontal accuracy 3–10 m). Latitude
and longitude were assigned to each measurement point based on lo-
cation within the grid or transect. Locations were verified in ArcMap.

2.3. Relating surface and root-zone soil moisture

Under dry climatic conditions, shallow soil moisture can become
decoupled from water availability across the soil column (Grayson
et al., 1997; He et al., 2013), which could confound both associations
with vegetation, and interpretation of shallow soil moisture patterns in
terms of basin hydrology. To establish relationships between shallow
soil moisture and whole-column water availability, TDR measurements
were compared to two independent metrics of subsurface water con-
tent: (i) pre-dawn leaf water potentials, and (ii) three continuously
reporting vertical soil moisture TDR arrays spanning the top 1m of soil.

2.3.1. Pre-dawn leaf water potential measurements
Pre-dawn measurements of leaf water potential provide a proxy for

root-zone water availability, under the assumption that non-transpiring
plants reached hydraulic equilibrium with soil water potential over-
night (Bréda et al., 1995; Dawson et al., 2007). Leaf water potential was
measured with a PMS 1505D pressure chamber (http://www.
pmsinstrument.com/), following the methods of Dawson and
Ehleringer (1993).

Pre-dawn leaf water potential was measured in whitethorn cea-
nothus, willow (multiple unidentified Salix species), lodgepole pine,
Jeffrey pine, and aspen (Populus tremuloides) at five sites co-located with
TDR measurements. At least three individuals were measured per spe-
cies per site, and each site was measured in early and late summer.
These water potentials were then compared to surface soil moisture
measurements.

2.3.2. Vertical TDR arrays
Weather stations, including TDRs installed horizontally at ≈

12 cm, 60 cm and 1m beneath the soil surface (12 cm CS655 Campbell
Scientific Soil Water Content Reflectometers, TDRs, http://www.
campbellsci.com), were installed in July 2015, in loamy sand soils be-
neath different canopy types (closed canopy, post-fire shrub, and post-
fire wetland) occurring within 200 m of each other (See Appendix C for
details). TDRs were installed horizontally into undisturbed soil and the
access holes backfilled and compacted. Exact TDR depths vary slightly
at each location due to reaching rock or the water table before 1 m, but
the soil was ≥ 90 cm deep at all three locations. The TDRs record soil
moisture every 10 minutes, and enable continuous comparison of sur-
face soil moisture to depth-integrated water storage.

2.4. Spatial data

Topography, vegetation cover, and fire history were mapped for the
ICB using ArcGIS (http://www.arcgis.com). Site characteristics were
extracted from these maps. Topographic covariates (slope, aspect, ele-
vation, distance to nearest stream, and upslope area) were derived from
a LiDAR elevation map of the ICB, coarsened to 10 m2 resolution from
the original 1 m2 map (Kane et al., 2015). Several specific topographic
indices were computed:

• The aspect index was used to control for the influence of slope or-
ientation on incident solar radiation. Rather than describing or-
ientation according to compass direction, the aspect index trans-
forms orientation to a 0–1 scale (south facing slopes ≈ 1 and north
facing ≈ 0), as − −cos Aspect0.5(1 ( 30)) (Kane et al., 2015).

• The Topographic Wetness Index (TWI) accounts for how topography
may predisopose a site to saturation via shallow subsurface flow.
TWI is computed as ln ,a

tan s( ) where a is the upslope contributing area
and s the local slope. The higher the TWI, the greater the topo-
graphic potential for saturation (Beven, 1983).

• The Topographic Position Index describes whether a site is in a valley
(TPI<0), a ridge (TPI>0) or on a near-planar slope (TPI≈ 0). It is
computed as

= − +TPI int elev focalmean elev annulus(( ( , , 150, 300)) .5)

where elev is the point’s elevation in meters, focalmean is a function
which takes the mean elevation over a ring surrounding the point
with inner diameter of 150m and outer diameter of 300 m, and int
refers to rounding the results to the nearest integer value
(Weiss, 2001).

The ranges for all topographic and fire history values are given in
Table A.1.

Dominant vegetation cover in 1969/1970 at the end of the fire
suppressed period, and in 2012 following 40 years of managed wildfire,
was mapped from aerial imagery (Boisramé et al., 2017b). Vegetation
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was classified as sparse meadow, dense meadow, shrub, aspen, and
conifer. Dense meadows include wetlands and areas of dense herbac-
eous cover, which cannot be reliably separated using imagery. Sparse
meadows include sparse shrub and/or herbaceous cover, and are
dominated by bare ground. Exposed bedrock and talus fields were ex-
cluded from our analyses. These vegetation classifications were used for
contemporary analysis, upscaling and extrapolation to historical maps.

Separately, the observed dominance of lodgepole pine (PICO) at a
measurement site was considered an additional classifier for the con-
temporary analysis. While PICO could not reliably be identified sepa-
rately from other conifer forest in aerial images, it is often associated
with wet conditions relative to other conifers, and could thus be a
useful indicator of hydrologic condition in the contemporary wa-
tershed.

Time since fire and times burned (since 1930) were computed from
a digital fire atlas containing all recorded fire perimeters within
Yosemite National Park (available from irma.nps.gov/Portal). If no fires
occurred, time since fire was set to 100 years. Fire severity was calcu-
lated using a relative version of the differenced Normalized Burn Ratio
(RdNBR), derived from Landsat Thematic Mapper images (Boisramé
et al., 2017a; Collins et al., 2009). Thresholds for RdNBR fire severity
classes (unchanged, low, moderate, and high) were taken from
Miller and Thode (2007).

Spatial covariates were extracted from the spatial datasets for each
subsite using ArcMap, and compared to field notes to verify accuracy.
They were used in initial exploratory comparisons of soil moisture
variability, as well as co-variates in the statistical models.

2.5. Other data

Weather data are incompletely observed across the ICB and
throughout the Sierra Nevada generally. Thus, variability in weather
conditions (and potentially other unobserved, time-varying drivers of
VWC variability) was accounted for by using the year of measurement
as a covariate in the statistical models of surface soil moisture described
below. For example, 2015 had three times more summer precipitation
than the other two years (120 mm in May–September, Yosemite
Southern Entrance Station, http://www.ncdc.noaa.gov), while 2016
had the most winter precipitation (890 mm in the winter of 2015/2016
compared to <400 mm the previous two winters). We were unable to
improve model results by incorporating observations from nearby
weather stations directly.

Prior to analysis, all covariates were tested to detect collinearity. No
correlation between covariates exceeded |r|> 0.7, a common cutoff
used to indicate unacceptable levels of collinearity (Dormann et al.,
2013; Shmueli, 2010). Test models were run incorporating latitude and
longitude as spatial predictors, but these covariates showed both high
collinearity with other covariates and low significance and were
dropped from the final models. For more details, see Appendix D.

2.6. Analysis of soil moisture variability

Soil moisture was related to site characteristics with statistical
models trained on measured surface soil moisture. All models were fit
using R software (http://www.r-project.org). Prior to model fitting,
data were manipulated to create a dataset in which predictor and ex-
planatory variables were resolved at similar spatial scales, and potential
biases due to higher sampling frequency of certain sites were addressed
as described below.

First, because the spatial predictor data are available at scales of
10 m–30 m, VWC measurements in each site were aggregated to the
mean value under each dominant vegetation type within the site. This
coarsening reduces the influence of fine-scale variations in, for ex-
ample, microtopography, which are not captured by the covariates. The
vegetation patch averaged data within individual sites are referred to as
“subsites”. The subsite data formed the basis for all modeling.

Secondly, the prioritization of highly time-varying sites when
sampling (as described in Section 2.2) meant that saturated sites in
early summer and dry sites in late summer were under-represented in
the data set. We used a gap-filling algorithm to correct for this sampling
bias towards variable sites. Gap-filling used early/late season mea-
surements from a different year at the same site, if available, and with a
scaled early or late season measurement if not. Scaling factors were
based on the observed mean seasonal variations from sites with both
early and late summer data (0.35 for early to late season scaling in dry
sites, or 1.4 for late to early season scaling of wet sites). This method
allowed us to fill in missing data in 59 of the 90 sites, adding 91 data
points to the original set of 347 subsite-aggregated measurements.
Thirty-one gap-filled points used data from the same time of year but a
different year, while 17 were in locations with no early summer mea-
surements, and 43 in locations with no late summer measurements. We
explored the effects of this gap-filling on model results, and verified that
results were minimally sensitive to this approach, in terms of both
modeled VWC values (prediction) and the relationships between mod-
eled VWC and covariates (explanation). Although this analysis showed
that missing data do not appear to be causing a significant bias in the
results, the gap-filled dataset has been used throughout the modeling
process to ensure that the data are balanced and complete.

2.7. Statistical models used

Two different statistical models were used to relate VWC to topo-
graphic, vegetation and fire history predictors: (i) a random forest
model and (ii) a generalized linear mixed effects model. Both models
predict continuously valued VWC using current vegetation type, vege-
tation type in 1970, upslope area, slope, aspect index, elevation, to-
pographic position index (TPI), topographic wetness index (TWI), dis-
tance from nearest stream, year of measurement (2014, 2015, or 2016),
day of year the measurement was taken (e.g. 152 for June 1), years
since last fire, times burned since 1970, and maximum fire severity
(unchanged, low, moderate, or high) as covariates. The current and
1970 vegetation types use the following categories: sparse meadow,
dense meadow, shrub, aspen, and conifer.

Using two statistical approaches allowed us to capitalize on the
relative advantages of each - primarily the ability of a random forest
model to address nonlinearity in relationships between covariates and
outcomes, and the relative ease of interpreting a linear regression
model. The comparison between the two modeling approaches also
provides a check on the consistency of interpretations made from the
data.

2.7.1. Random forest model
Random forest models predict a continuous variable by creating a

large number of regression trees, each based on a random subset of all
possible covariates. The predicted values from all of the trees is then
averaged (Breiman, 2001). Each regression tree divides the data into
smaller and smaller groups, or nodes, until a stopping criterion is
reached. The data in each parent node is divided into two child nodes
based on one of the predictors, and the division that maximizes the
separation in values between the two child nodes is selected at each
step. The value of a new point in covariate space is computed by fol-
lowing the path from the first node to the appropriate terminal node.
The random forest method can describe non-linear responses between
variables and predictors, and avoids over-fitting that can result from
using only one regression tree (Grömping, 2009; Kane et al., 2015;
Prasad et al., 2006).

We used the RandomForest package in R (Liaw and Wiener, 2002)
to fit a random forest model, and set the minimum node size to 5 and
the number of trees to 500, the number that minimized the RMSE of the
model. The impact of different covariates on modeled VWC was
quantified using the importance and partial dependence. The importance
of a covariate in a random forest model is calculated using the change
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in model error when a covariate is included or excluded as a covariate
when training the model (Liaw and Wiener, 2002). The partial depen-
dence describes the response of a dependent variable to individual
covariates, while controlling for the effects of other covariates. For
example, partial dependence could describe the influence of elevation
on modelled VWC, independently of variation in other covariates. To
assess the partial dependence, VWC would be computed for all possible
values of the other covariates (vegetation cover, slope, aspect, time
since fire, etc.) holding elevation constant. The resulting VWC values
would be averaged. This procedure is repeated for different constant
values of elevation to visualize the mean VWC response to changing
elevation (Appendix D).

2.7.2. Linear mixed effects model
The VWC data were also fit with a generalized linear mixed effects

model, referred to subsequently as “linear model” (Clark, 2007). This
statistical modelling method is widely used, and can account for spatial
autocorrelation between sub-sites. Spatial autocorrelation is often ex-
hibited by large scale moisture patterns (Western et al., 1998).

The linear model was trained on the same data as the random forest
model, using the lme function in R and assuming a spherical spatial
correlation structure (Pinheiro et al., 2015). Vegetation cover was
treated as a random effect (as in Chen et al., 2012; Omuto et al., 2010),
allowing each vegetation type to have a separate intercept. We sepa-
rated vegetation type by current and 1970 cover. All other covariates
were treated as fixed effects, and were normalized to have values be-
tween 0 and 1 so that the magnitudes of model coefficients are com-
parable. For the categorical covariates of measurement year, fire se-
verity, and times burned, we coded dummy variables, set to 0 or 1 for
each data point by category (UCLA: Statistical Consulting Group, 2017).
For example, two dummy variables were created for “year”: the first
was set to 1 if the measurement year was 2014 and 0 otherwise; the
second variable was set to 1 if the measurement year was 2015 and 0
otherwise. Year 2016 was left as the intercept. The coefficients on these
variables represent the relative change in VWC in 2014 or 2015 com-
pared to 2016.

The final model takes the form

∑= +
=

VWC veg x C veg C x( , ) ( )
i

n

i i0
1

where VWC is the predicted water content, veg is the vegetation tran-
sition from 1970 to 2012, C0 is an intercept unique to each vegetation
category, x is a vector of n covariates, and Ci are model coefficients.

2.7.3. Model performance
Model performance was evaluated using a cross validation proce-

dure in which all data measured within a random subset of X% of all
sites were selected as training data, and used to predict VWC in the
remaining 100-X% of sites. X varied from 70-90% of the data, and 100
iterations of the cross validation were performed for each value of X.
This cross validation was designed to avoid spurious outcomes due to
potential autocorrelation within sites (i.e. across subsites). Model per-
formance was evaluated using root mean squared error (RMSE) and
correlation coefficients. The mean and range of model performance
across all 100 iterations provides an indication of the model skill in
extrapolating beyond the observation points.

2.7.4. Simulations of soil moisture response to landscape change
Once the statistical models were trained to field measurements of

VWC, the models were used to upscale soil moisture measurements to
the whole ICB on a 10 m resolution grid, based on the maps of topo-
graphic covariates, fire history, and vegetation. These watershed-scale
estimates were made using both contemporary and historical vegeta-
tion coverage and fire histories, providing insight into potential changes
in soil moisture induced by the managed wildfire policy. To run the

model to represent 1970 conditions, the “year” covariate was set to
either 2014, 2015, or 2016 - effectively modeling VWC subject to the
land cover and fire history from 1970, modulated by 2014–2016 cli-
matic conditions.

3. Results

3.1. Field measurements

3.1.1. Relating surface and root-zone soil moisture
Both pre-dawn leaf water potentials and comparisons between near-

surface and deeper subsurface soil moisture support the existence of a
relationship between surface soil moisture and overall water avail-
ability at a measured site, although this relationship is not perfect.
Predawn leaf water potentials were correlated with shallow soil
moisture with a correlation coefficient of 0.69 (Fig. 3(A)). The greatest
sensitivity of leaf water potential to VWC was observed for VWC below
0.08. A logarithmic function provided a good fit (R2 = 0.61) to the
observed relationship between leaf water potential and soil moisture. At
the weather stations, the correlation coefficient between daily VWC at
12 cm and at 60 cm (during the summer months of May–August) was
0.98 for the closed canopy and shrub sites and 0.79 for the wet meadow
site, and correlation between 12 cm and 90 cm–1 m soil moisture was
0.95 for closed canopy, 0.94 for shrub, and 0.77 for wet meadow (See
Fig. C.1 for plots of soil moisture at all three depths). Combining data
from all 3 stations, shallow soil moisture was strongly correlated to
60 cm soil moisture ( =ρ 0.96) in the months of May-August, and well
correlated to deep soil moisture ( =ρ 0.91) (Fig. 3(B) and (C)). While
surface soil moisture is not a one-to-one indicator of soil column water
availability in the ICB, spatial variations in surface soil moisture appear
to indicate spatial variation in water availability to plants and across
the soil profile during the growing season.

Fig. 3. Relationships between shallow and deep soil moisture. (A) A positive trend be-
tween surface soil VWC and water potential suggests that when surface soil moisture is
low the root zone also has low moisture (and therefore a more negative water potential).
Each point represents mean pre-dawn leaf water potential at a given location in conifers,
willows, or ceanothus. Error bars give the standard deviation within each plant type at
each site. (B-C) Continuous soil moisture measurements at three locations from May 20 to
August 10, 2016 show shallow and deep daily measurements of VWC are closely related.
Plot B shows measurements at 12 cm and 60 cm, with a correlation of 0.96, while C shows
100 cm vs. 12 cm, with a correlation of 0.91.
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3.1.2. Observed relationships between VWC and vegetation type
Summer surface soil moisture content varied strongly across vege-

tation types, both in terms of mean or median VWC per vegetation type,
and in terms of the variability associated with each vegetation class. To
represent this within-class variability, data are presented as violin plots
(Fig. 4). These plots show the distributions of data in different cate-
gories of pre-fire and contemporary vegetation. Persistent wetlands -
areas that were mapped as dense meadow from the 1969/1970 aerial
photographs and continued to be identified as such in all subsequent
mappings using more recent aerial photos - had the highest moisture
content of all sites. Conifer forests that burned and regenerated as dense
meadows by 2012 were the next wettest vegetation category. Despite
the drought conditions during the study, saturated soil was present in
some of the dense meadows and persistent wetlands through to the late
summer in every year. Soil moisture measurements were bimodal for
burned dense meadows (all times) and persistent wetlands (late
summer only), with most measurements either very wet or very dry
(potentially due to small variations in elevation above a shallow water
table).

In a mean sense, dense meadows were distinct from and much
wetter than other vegetation categories, with mean VWC of 0.38 in May
and 0.28 in August. At the beginning of the summer, persistent conifer
sites had the next-highest mean VWC (0.11 across all conifer species),
but dried rapidly and were comparable with other non-wetland vege-
tation types by August (0.06 VWC). There was a large range of varia-
bility within the conifer sites relative to other vegetation types. Conifer
sites dominated by PICO had significantly higher mean VWC
throughout the summer than other non-meadow vegetation (2.7 times
higher under PICO, p< .0001 according to one-sided t-test). As

discussed in Section 2.4, PICO sites were grouped with other conifers in
the statistical model. We verified that this grouping did not result in
changes in predicted VWC of more than 0.03, compared to statistical
models representing PICO separately.

Shrublands and sparse meadows had comparable mean soil
moisture values at the end of May (0.10 and 0.09, respectively), but the
sparse meadows dried more rapidly, dropping to 0.04 mean VWC by
June (data not shown) compared to 0.07 for shrubs (statistically dif-
ferent according to one-sided t-test, p = .001). The difference between
June VWC values under these vegetation types is slightly lower and less
significant when data is mean-aggregated by site rather than using each
individual measurement (mean VWC = 0.05 for sparse meadow and
0.07 for shrubs, p = .07). In June, only 20% of VWC measurements in
shrub sites fell below 0.03, whereas such low values were more
common in sparse meadow or conifer sites (40% for both). By August,
however, all vegetation types except for dense meadow and PICO had
similar distributions of moisture.

3.2. Modeling results

3.2.1. Model performance
Cross validation results indicated that the random forest model

provided an excellent fit to training data (mean Pearson’s correlation
coefficient, =ρ 0.98), and a robust, but weaker fit to test data (mean

=ρ 0.81). Random forest model fits to all 2014–2016 soil moisture
observations are shown in Fig. 5. The linear mixed effects model did not
fit the training data as well ( =ρ 0.87), and achieved comparable per-
formance to the random forest model when predicting test data
( =ρ 0.79). The results shown in Table 1 are representative of the full

Fig. 4. Soil moisture measurements under different
vegetation categories. Violin plots show the dis-
tribution of soil moisture measurements from all
three summers, from either late May (A) or
July–August (B). The first two vegetation categories
are always conifer (conifer cover in both 1970 and
2012) and always conifer with PICO dominating
currently. The next three categories, con. to shrub,
con. to sparse, and con. to dense mdw., are sites
where burned conifer forests were replaced by shrub,
sparse meadow, or dense meadow. The final cate-
gory, persistent wetland, includes sites that were
dense meadow in both 1970 and 2012 (all such sites
were wetlands). For simplicity, less common vege-
tation categories and June measurements are not
shown. The width of the shape for each category is
proportional to the number of observations at that
VWC value, similar to a histogram. Red crosses show
the mean within each vegetation category.
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suite of cross-validation exercises and show summary results for an
80:20 split between training and test data. They suggest that the
random forest model may be overfitting the training data
(Shmueli, 2010). Given the similarity in model performance, and to
avoid duplication, model results presented here primarily use the
random forest model output, which captures nonlinear relationships,
and avoids some unrealistic VWC predictions (e.g. VWC>0.6 or
VWC<0) made by the linear model. We refer to the linear model re-
sults to assist in interpretation of soil moisture sensitivity to covariates,
and for checks on consistency between the models.

Numerous consistency checks verified that details of the training
data organization (e.g. splitting versus lumping PICO with other con-
iferous forests, including or avoiding gapfilling to avoid early/late
season bias in dry/wet sites) did not significantly impact model pre-
dictions, structure, or performance. For example, there was a correla-
tion of 0.99 between VWC values from a model trained on observed
data only and values from a model trained on gap-filled data. The mean
difference in VWC between these two versions of the random forest
model was 0.01, with a maximum difference of 0.06 at any subsite.
Primarily, bias correction resulted in lower predictions of late summer

soil moisture values, relative to the raw data, which we expect to be
reasonable.

3.2.2. Sensitivity of VWC to landscape parameters and fire history
As shown in Fig. 4, significant differences in soil moisture attributes

arose between vegetation classes. Table 2 shows correlations between
VWC and other landscape characteristics, and suggests that there were
not overriding individual correlations between VWC and topography,
fire history or time metrics. Upon controlling for covariates via statis-
tical models, however, clear distinctions in the relative importance of
the covariates’ influence on VWC emerged.

The random forest importance metric shows that contemporary
vegetation was the most important predictor of soil water content, and
pre-fire vegetation was also in the top three most important (Fig. 6 and
Table 3). TWI was one of the most important predictors of VWC in the
random forest model, and had moderate predictive power in the linear
model; slope had a strong influence on soil moisture in both models (see
Table 3, Fig. 6, Table 4 and Fig. D.2). Both models agreed that years
since fire and times burned did not have an important impact on VWC
compared to other covariates.

The partial dependence metrics for the random forest model show
that soil moisture is more likely to be high at sites with low slopes, low
topographic position index, and near rivers or creeks - that is, in valley
bottoms (Fig. 7(B), (D), and (F)). Soil moisture increased slightly with
elevation and with aspect index (Fig. 7(A) and (C)). Topographic wet-
ness index (Fig. 7(E)), slope (Fig. 7(B)), and upslope area produced
threshold-like responses in VWC. Locations that were unburned or
burned at low severity were more likely to have high VWC
(Fig. 7(G)–(I)), although this relationship varied with vegetation type.
For example, soil under conifer stands that regrew following high se-
verity fire had the highest mean VWC of all conifer stands (data not
shown).

The sign of the linear model coefficients for each covariate matched
the sign of the slope of linear fits to the random forest partial de-
pendencies, with the exception of times burned which had low sig-
nificance in the linear model (Tables 4 and 3, Fig. 7). In the linear
model, day of year had a greater coefficient than year (−11 vs. 3),
confirming that within-year variability is more important than inter-
annual variability. Again in agreement with the random forest results,
topographic covariates generally had more influence on VWC than fire
history according to the linear model (in terms of coefficient magni-
tudes as well as statistical significance).

3.3. Time dependence of soil moisture

The relationships in VWC between sites were consistent over all
years, but some variation in individual sites did occur from year to year,
and different years varied slightly in the mean. For most sites, 2014,
which followed one of the lowest winter snowfalls on record across the
Sierra Nevada, had the lowest soil moisture. This year to year varia-
bility had low importance in the random forest model, relative to the
vegetation and topographic differences (Fig. 6 and Table 3). There were
notable small differences, however: mean VWC was 0.01 higher in 2016
(the wettest year) compared to 2014 (the driest summer) on average,
independent of all other covariates (Fig. 8(A)). This difference in means
was statistically significant (p< −e1 10) according to a t-test performed
on 100 cross-validation runs.

3.3.1. Summer moisture loss under different vegetation types
In contrast to the small year-to-year variability, within-year varia-

tion was relatively large (Fig. D.1). The rates of summer dry down could
be estimated at 24 sites where soil moisture measurements were
available at three dates (usually May, June, and late July or early Au-
gust) by fitting a linear equation to the three data points. This linear fit
gave a mean net loss of approximately 0.1–0.2 mm/day over the
summer for all vegetation types except for permanently flooded

Fig. 5. Random forest model fit to observed soil moisture. All observed data from
2014–2016 is included. Error bars show the range of the 25th–75th quantiles of results
from all trees within the random forest model.

Table 1
Mean and range of correlation coefficients (ρ) from 100 cross validation runs of two
different models used to fit observed VWC data. Training data includes a random 80% of
measurement sites, while test data includes the other 20%. Data is aggregated by subsite.

ρ, Random Forest
Mean (Min–Max)

ρ, Linear Model
Mean (Min–Max)

Training Data 0.98 (0.98–0.98) 0.87 (0.84–0.90)
Test Data 0.81 (0.63–0.95) 0.79 (0.63–0.90)

Table 2
Pearson’s correlation coefficient of subsite-aggregated VWC compared
to covariates (excluding categorical covariates such as vegetation).

Covariate Correlation w/ VWC

TWI 0.52
Years Since Fire 0.19
Elevation 0.18
Upslope Area 0.17
Year 0.11
Aspect 0.09
Times Burned −0.14
Severity (max) −0.20
Day of Year −0.20
TPI −0.22
Slope −0.39
Dist. from River −0.40
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meadows (which did not dry). This results in a mean VWC drop of
approximately 0.09–0.12 across the summer. The data were also nor-
malized by dividing by the mean VWC at each site, in order to give the
slope of the linear fit (the drying rate) as a percent per day. Using this
normalizing method, forested hillslopes and sparse meadows dried at
≈ 2%/day, shrublands and riparian areas at ≈ 1%/day, and perma-
nent wetlands did not dry out. Although these average values are useful
for approximating seasonal water loss from shallow soils, the random
forest model suggested that sharp decreases in soil moisture occurred at
the end of May (corresponding to the end of snowmelt) and in late June
(corresponding to peak temperatures), rather than drying proceeding
uniformly throughout the summer (Fig. 8(B)). Similarly nonlinear
drying trends were observed at the weather station TDR profiles
(Fig. C.1).

3.3.2. Model simulations of soil moisture response to landscape change
Fig. 9(A) and (C) shows the results of upscaling the random forest

model to the whole ICB. As shown, the resulting soil moisture predic-
tions appear reasonable - no unrealistically high VWC values were
predicted (Fig. 9(C)), and the spatial patterns appear realistically cor-
related and do not display isolated, erratic, high or low values, in-
cluding in areas of the watershed where no observations were made.
Fig. 9(B) and (D) shows an example of modeled difference in VWC

Fig. 6. The relative importance of each covariate to the random forest model. Importance is related to the reduction in model error when that covariate is included. The covariate with the
highest importance is the current vegetation type. Topographic wetness index (TWI), vegetation type in 1970, slope, and distance from the nearest river (or creek) are the next most
important covariates for predicting VWC. Years since fire, times burned, and the year of measurement all have a relatively small effect on the model predictions.

Table 3
Random forest model of soil moisture. Importance is given in terms of the mean and
standard error of the percent increase in mean squared error when the covariate is re-
moved. The final column gives the sign of the slope of linear fits to the partial plots for
each numerical covariate (+ means that an increase in the covariate generally corre-
sponds to an increase in VWC).

Covariate Mean Importance
(% change MSE)

Standard
Error

Sign of
Relationship

Current Veg. 211.9 4.4 N/A
TWI 53.6 2.9 +
1970 Veg. 36.9 2.3 N/A
Slope 32.7 1.7 –
Meters to River 31.9 1.8 –
TPI 25.6 1.4 –
Upslope Area 21.2 1.5 +
Fire Severity 17.5 1.1 –
Aspect 15.6 0.8 +
Elevation 15.4 1.0 +
Day of Year 13.2 0.6 –
Times Burned 4.8 0.6 –
Years Since Fire 3.7 0.6 +
Year 1.5 0.3 +

Table 4
Generalized linear mixed effects model of soil moisture. Random effect intercepts are different for each vegetation category (combining 1970 and 2012 vegetation). “Sparse” indicates
sparse meadow and “Meadow” indicates dense meadow. Coefficients and their standard errors (SE), t-values, and p-values are shown for normalized continuous covariates as well as
categorical covariates set to 0 or 1. Coefficients for categorical covariates represent a computed effect versus a given reference value. The p-values are the results of a marginal analysis of
variance on the model.

Random effects:

Veg 1970 Conifer Shrub Conifer Sparse Sparse Conifer Aspen Meadow Conifer Conifer Meadow
Veg 2012 Sparse Shrub Conifer Conifer Sparse Shrub Aspen Conifer Aspen Meadow Meadow
Intercept 0.19 0.20 0.21 0.21 0.21 0.22 0.25 0.25 0.38 0.40 0.52
Fixed effects coefficients and significance:

Continuous Covariate Coefficient SE t-val. p-val. Categorical Covariate Coefficient SE t-val. p-val.

Slope −0.18 0.04 −4.2 0.0000 Year 2014 vs. 2016 −0.04 0.01 −2.7 0.0071
TPI −0.17 0.06 −3.0 0.0032 Year 2015 vs. 2016 −0.04 0.01 −2.7 0.0067
DOY −0.13 0.02 −7.4 0.0000 Mod. Severity vs. Low−0.04 0.01 −3.1 0.0022
Meters to River −0.01 0.06 −0.2 0.8045 High Severity vs. Low −0.04 0.02 −2.4 0.0180
Time Since Fire 0.00 0.06 0.0 0.9647 Burned 1X vs. Unburned 0.04 0.07 0.8 0.4450
Aspect 0.01 0.02 0.7 0.4883 Burned > 1X vs. Unburned 0.02 0.05 0.4 0.7227
Elevation 0.02 0.03 0.7 0.4760
Upslope Area 0.02 0.02 1.0 0.3210
TWI 0.08 0.04 1.9 0.0650
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between current conditions and fire-suppressed conditions. Specifically,
this difference is calculated by modeling VWC with contemporary ve-
getation and fire history and then subtracting modeled VWC using 1970
conditions. Both the contemporary and 1970 models set the date to
mid-August and set the “year” covariate to 2014 (effectively using 2014
climate). A positive value in Fig. 9(B) indicates that soil moisture is
higher under 2014 conditions relative to 1970. At the basin scale,
minimal differences in spatially averaged surface soil moisture are
predicted between the fire suppressed and contemporary conditions
(changes in mean basin-scale VWC <0.02 for any model version).
Dramatic changes, however, were predicted in the wetness of individual
sites under all tested versions of the statistical models. Burned forest
sites that regenerated with dense meadows (potentially wetland)

vegetation increased in predicted summer VWC by as much as 0.31
(Figs. 10 and 9(D)). Variability in the VWC changes at these sites were
associated with differences in TPI (larger increases in valley bottoms)
and fire history (larger increases following low severity fire, relative to
high severity fire, see Fig. 11). These large local increases in soil
moisture, however, were offset by widespread, minor decreases in soil
moisture; with the greatest decreases (down to −0.24) modeled in lo-
cations where conifers encroached on meadows. Using 2015 or 2016 as
the contemporary year instead of 2014 resulted in only small differ-
ences in the map, and magnitude, of change.

The small magnitude of basin-scale change can be attributed to the
relatively small changes in VWC estimated for the most common ve-
getation transitions. For example, from 1970 to present, 55% of the

Fig. 7. Modeled changes in soil moisture across ranges of values for topographic and fire history covariates. Partial dependence of VWC on 9 covariates according to the random forest
model are shown: elevation, slope, aspect index, distance to nearest river/creek, topographic wetness index (TWI), topographic position index (TPI), times burned since 1970, maximum
severity, and years since fire.
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ICB’s vegetated area was either permanently forested or burned and
regrew as conifer forest (Table 5). Burning these areas did not result in
large predicted changes in VWC: at most these sites increased in VWC
by 0.02 or decreased by 0.05 (Table 5). The largest changes in VWC
were associated with vegetation transitions that impacted less than 2%
of the basin area (Table 5, Fig. 9(D)).

4. Discussion

This study set out to determine how the changing fire regime in the
ICB may have impacted its hydrology, by addressing a suite of related
questions about soil moisture - (i) was it a useful indicator of ecologi-
cally relevant water availability?, (ii) was vegetation a valuable proxy
for soil moisture spatial variability? and (iii) how did topography and
fire history influence soil moisture? The combination of field

Fig. 8. Modeled changes in soil moisture over time. Partial dependence of VWC is shown for (A) the measurement year and (B) the number of days after the previous December 31 that the
measurement was taken, according to the random forest model.

Fig. 9. Results of upscaling soil moisture
using a random forest model. (A) Map of
surface soil moisture given as volumetric
water content (VWC) for June 9, 2014.
Areas shown in white are exposed bedrock,
talus, or lakes. (B) Change in VWC due to
fire and land cover change, calculated as the
difference between soil moisture under cur-
rent conditions and what soil moisture
would have been if there had been no fires
in ICB since 1900. The measurement date
covariate in the random forest model was
set to early August 2014. Dark blue areas
denote increases in soil moisture, while or-
ange denotes a decrease and tan or pale blue
indicates almost no change. (C) Histogram
of modeled soil moisture across the ICB. (D)
Histogram of soil moisture changes shown
in (B); most VWC changes were less than
0.05 in magnitude (nearly 98% of the
landscape), so the heights of these bars are
truncated to better show the larger changes.
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measurements and statistical modeling at ICB provides insights into all
these topics.

The study period of 2014–2016 coincided with a period of extended
and severe drought in California characterized by both low precipita-
tion and high temperatures (Dettinger and Anderson, 2015; Griffin and
Anchukaitis, 2014). Although the summer of 2016 followed a winter of
near-average precipitation, the Sierra Nevada was still considered to be
in extreme to exceptional drought (http://www.droughtmonitor.unl.
edu). Our results might be different if we were using measurements
from a non-drought summer. Understanding hydrologic dynamics
during drought conditions, however, is disproportionately important
since small changes in water availability can have a very large impact
during times of water limitation.

4.1. Is surface soil moisture a useful indicator of ecologically relevant water
availability?

Both leaf water potential and continuous soil moisture measure-
ments suggest that surface soil moisture provides a proxy for plant
available water (or soil-profile water storage) in the ICB (Fig. 3). The
relationship between shallow soil moisture and leaf water potentials in
plants was variable, presumably due to variations in plant morphology,
subsurface heterogeneity, and potentially variable rates of night-time
transpiration which inhibit equilibration between leaf and root zone
water potentials (Dawson et al., 2007; Sellin, 1999). Despite very dry
soil conditions measured at some sites, plant water potentials remained
relatively high. This may be related to the availability of non-soil water
reservoirs. For instance, conifers in the Sierra Nevada may obtain as
much as a third of their water from fractured rock beneath the devel-
oped soil (Bales et al., 2011; Royce and Barbour, 2001). Nonetheless,
our small number of measurements from large, deep-rooted conifers
had the lowest measured leaf water potential in areas with the driest
measured surface soil moisture (Figs. 3(A) and B.1).

Strong correlations between surface and deep continuous soil
moisture measurements support the value of shallow soil moisture as a
proxy for site water availability (Fig. 3(B) and (C)), though these cor-
relations vary with time, depth, and vegetation cover type. Despite the
close relationship between shallow and deeper soil moisture, the re-
lationship was non-stationary over the summer, and the non-

Fig. 10. Scatterplots of modeled surface soil moisture for June of 1970 to June of 2014.
Only three vegetation transition types are included here: those that were conifer-domi-
nated in both 1970 and 2014 (conifer to conifer, in black), dense meadow in both years
(dense meadow to dense meadow, in blue), and those that were conifer-dominated in
1970 and transitioned to dense meadow by 2014 (conifer to dense meadow, in green).

Fig. 11. Modeled increase in June VWC between
1970 and 2014 in areas that transitioned from con-
ifer to dense meadow during this period. (A) TPI has
a correlation of −0.47 with the change in VWC, and
(B) fire severity (ranging from 0 = no change within
a year of fire to 3 = high severity) has a correlation
of −0.42. Results using late summer VWC were
nearly identical.

Table 5
Vegetation type transitions. Percent of total area experiencing each of the 9 most common
transition types (all other types cover < 1% of the total watershed area), with the as-
sociated minimum, maximum, and median changes in mid-June VWC between 1970 and
2014 (Δ VWC), according to the random forest model (a positive number indicates an
increase in soil moisture from 1970 to 2014 for an individual grid point).

1970 Veg. 2012 Veg. Area
(%)

Δ VWC
Min.

Δ VWC
Max.

Δ VWC
Median

Conifer Conifer 54.7 −0.05 0.02 0.00
Conifer Sparse 17.3 −0.06 0.02 0.00
Conifer Shrub 8.3 −0.06 0.02 0.00
Sparse Sparse 4.3 −0.04 0.02 0.00
Shrub Shrub 4.0 −0.04 0.02 0.00
Shrub Conifer 3.5 −0.04 0.02 0.00
Sparse Conifer 2.7 −0.05 0.02 0.00
Shrub Sparse 1.9 −0.04 0.02 0.00
Conifer Dense Meadow 1.6 −0.03 0.31 0.17
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stationarity varied with vegetation conditions. Soils at the instrumented
wetland site (which had been forested prior to 2004) remained satu-
rated at depth all summer, while in the forested site summer soil
moisture was fairly constant with depth, and in the shrubland deeper
soils contained twice as much water as shallow soil in the early summer
of 2016 (Fig. C.1). These data raise the intriguing prospect that vege-
tation conversions from forest to shrubland or meadows could increase
deep soil moisture stores significantly, despite only minor changes
being observed in surface soil moisture - a prospect consistent with the
shallower rooting depth of shrubs/grasses relative to mature trees.
Using the weather station data to extrapolate soil moisture changes in
the top meter of soil, we estimated a 7% increase in mean watershed
soil moisture in early summer of 2014 relative to 1970 - compared to an
estimated 2% drop in shallow soil moisture alone (Appendix E). This
extrapolation has high uncertainty given the limited number of deep
VWC measurements, but illuminates a possibility that deeper soil
moisture stores are increasing due to fire regime shifts even in some
places where surface soil moisture is not strongly affected. The general
trends of our results would not change, however, with those areas that
transition from conifer to dense meadow still experiencing the greatest
increases in moisture (Appendix E).

4.2. Model performance

The linear and random forest models gave similar results in terms of
covariates’ influence on VWC as well as the predicted upscaled spatial
pattern of soil moisture. The model predictions were also stable to the
tested variations of model structure or input data treatment. Using cross
validation, we found model correlation to test data of approximately
0.81 using random forest and 0.79 using the linear model. This was
stable across different cross validation exercises undertaken. These
model fits are strong in comparison to similar statistical models used to
predict soil moisture in other studies (e.g. Western et al., 1999, found
model predictions to have ρ≤ 0.78 for VWC on individual days,
whereas our model has higher ρ and spans a range of dates) and are
comparable to the performance of remotely sensed soil moisture pro-
ducts (e.g. Chan et al., 2016, found a mean correlation of 0.78 between
time series of satellite-derived soil moisture and measured data).

4.3. Is vegetation a viable proxy for soil moisture?

Vegetation was the strongest predictor of soil moisture status within
the ICB, eclipsing topographic factors (the next most important pre-
dictors) and fire history, which are discussed below. The importance of
vegetation was strongly driven by the large differences in wetness be-
tween wetlands and other vegetation types (Fig. 4).

As discussed in the introduction, we anticipated this strong re-
lationship between moisture and vegetation because multiple feedbacks
influence their interactions. Vegetation changes can alter soil moisture
through changes to water and energy balances, while soil moisture le-
vels partially determine the type of vegetation which will establish
following a disturbance. While the causal links between moisture and
vegetation cannot be determined via this data analysis, the association
of different vegetation types and transitions with different soil moisture
states holds across the ICB, providing an avenue for using vegetation
change as a proxy - albeit an imperfect proxy - for hydrologic change.

4.4. How did topography and fire history influence soil moisture?

Topography, and particularly the topographic wetness index, was
an important determinant of wetness within vegetation types. Valley
bottoms and other topographically convergent locations, as well as

higher elevations, were associated with higher soil moisture.
Surprisingly, south facing slopes had higher soil moisture than north
facing slopes once other factors were controlled for, however this effect
was not strong.

Model results suggested that, amongst conifer forests, soil moisture
was elevated in both unburned areas and high severity burn areas, and
lower in areas with low-moderate severity fire. Elevated moisture fol-
lowing high severity fire can be explained by reduced evaporating leaf
area and plant water demand. High moisture in unburned sites could be
due to reduced soil evaporation under unburned canopies, or it is
possible that contemporary unburned sites failed to burn in the first
place because of their relatively wet conditions. Amongst the remaining
vegetation classes, soil moisture was generally lower in sites with fre-
quent or severe fire histories. Interpreting the causal influence of fire on
water availability is complicated in the ICB, because moisture avail-
ability and topography also determine where fires occur in this basin
(Kane et al., 2015). Thus low soil moisture in frequently or severely
burned sites (Fig. 7(G) and (H)) could reflect the effect of vegetation
change on soil moisture status, or it could reflect the propensity for dry
sites to burn more frequently.

The potential for dry sites to promote burning may also have caused
the statistical model to overestimate soil moisture in the unburned 1970
scenario: (1) dry, fire-prone coniferous sites may be very rare within the
basin today (and thus were not captured in the observations we made)
after 40 years of managed wildfire, (2) unburned or low fire severity
conifer sites may have escaped high severity fire due to pre-existing wet
conditions. Overall, these issues may have biased the estimates of hy-
drologic change in the basin towards drying.

4.5. Influences of a changing fire regime on basin hydrology

Overall, the changing fire regime in the ICB appears to have im-
pacted the hydrology of the basin, but in a highly spatially variable
fashion (Fig. 9).

Large increases in water availability were associated with the <2%
of the basin area where burned forests regenerated as meadows. Other
vegetation transitions, which occupy a larger proportion of the basin,
resulted in minor changes in soil moisture, the sign of which varied
with local topography and fire history (Table 5). Since fire-regime in-
duced forest loss occurred over some 20% of the basin (Boisramé et al.,
2017b), the constrained nature of the wet-up is suggestive of the con-
fluence of other topographic, fire history or unobserved factors that
govern the nature of these vegetation transitions and hydrologic
changes.

There was large variability in soil moisture within vegetation
transitions. For example, some areas where conifer transitioned to
dense meadow following fire saw no change in soil moisture, while
others saw VWC increases up to 0.31 (Fig. 10). This variability was
largely driven by topography: flat landscapes (TPI near zero) were
sometimes associated with decreased VWC in new dense meadows
(Fig. 11) and also experienced the greatest drying from 1970 to the
present day under other vegetation transitions (not shown). The largest
modeled increases in VWC occurred in post-fire meadows that formed
in topographically convergent areas. Convergent sites, however, did not
always transition to dense meadows following stand replacing fires,
showing that topography is not a perfect predictor of moisture in-
creases.

The wet meadow areas sampled were variable in their water sources
- some appear to be strongly snowpack dependent (revealed by wetter
conditions in the near-average snow year of 2016 compared to ex-
tremely low snowpack in 2015), and some appear to be more dependent
on summer rainfall (drier conditions in 2016 than 2015, mirroring
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trends in summer rainfall between the years). This could be due to
variations in water sources, ranging from observable sources such as
streams to unobservable sources such as springs or seeps (Ratliff, 1985).
The diversity of hydrological drivers and responses associated with the
sampled meadows is suggestive of a complex suite of processes linking
vegetation, soil moisture, topography, and climate (Lowry et al., 2011;
Rodriguez-Iturbe et al., 2007), all of which can interact with, shape,
and be shaped by shifts in vegetation due to changing fire regimes
(Neary et al., 2005). A deeper understanding of subsurface flow pro-
cesses in ICB would allow us to better estimate past soil moisture dis-
tributions, but at present we are restricted to statistical relationships
between soil moisture and surface topography, which cannot capture
the effects of flows from springs.

Although conifer to dense meadow transitions and the associated
increases in water availability are only associated with a small area in
the ICB, these increases in water availability could nonetheless provide
important hydrologic refugia for water-dependent plants or animals
(McLaughlin et al., 2017). Wetlands also sustain summer baseflow in
small streams, and thus have an impact on downstream ecosystems.

These transitions from relatively dry forests to wetter meadows may
be an example of alternative stable states (Ridolfi et al., 2006). In areas
that are prone to high soil water storage (due to topography and/or
subsurface flow paths) forests can provide stabilizing feedback if the
trees’ high levels of transpiration maintain groundwater levels low
enough for more trees to establish. On the other hand, wet meadows
can remain stable via multiple mechanisms that maintain high water
tables which then limit tree establishment (Fletcher et al., 2014; Ridolfi
et al., 2006). A dry period can switch the system from the meadow
stable state to the forested stable state by initiating a period of conifer
encroachment (Helms, 1987), while fire or some other cause of tree
mortality can return a forest to a stable meadow state (Fletcher et al.,
2014). In either case, the vegetation transition is accompanied by a self-
reinforcing transition in water storage. It is also possible that some of
these meadows represent unstable states: if water levels are low enough
that conifer establishment is not strongly drought-dependent, frequent
disturbances such as fire may be necessary to prevent transitions back
to forest (Helms, 1987). Either way, observed land cover changes
(Boisramé et al., 2017b) and the moisture changes modeled here sug-
gest that a frequent fire regime is necessary for the long-term main-
tenance of at least some of the wet meadows in the ICB, and thus the
maintenance of associated high subsurface water storage.

4.6. Future work

Ongoing observations at the weather stations described here aim to
explore how changes in vegetation canopy impact microclimatic con-
ditions and local scale water balance, as an initial exploration of how
vegetation changes may translate into changes in hydrologic drivers.

It is possible that water stores in deeper soils, or in the unmonitored
fractured bedrock have increased due to the change in fire regime.
Future work using hydrologic modeling will explore these possibilities.

5. Conclusion

Statistical models of the ICB indicate that vegetation can provide a
useful proxy for soil moisture availability, and thus potentially its
changes over time, provided that topographic and fire history effects
can be controlled for. Vegetation was the most important predictor of
variations in surface soil moisture; and surface soil moisture was related
to both plant available water, and to measures of water availability in
the surface 1m of soils. Thus, topographic and vegetation spatial

information provided a scaling approach to link site based observations
to basin-wide soil moisture regimes. Such an approach is widely ap-
plicable to watersheds with variable vegetation cover observable using
remote sensing.

The model results did not indicate large changes in basin-averaged
surface soil moisture in the ICB following restoration of the fire regime.
Individual locations exhibited large increases in soil moisture following
fire-induced vegetation conversions, while much of the remainder of
the basin showed no change or weak drying trends. The basin scale
estimates may be biased towards under-estimating the hydrologic im-
pacts of these managed wildfire regime, however, due to a likely bias
towards observing relatively wet contemporary coniferous forests, and
possibly greater differences in deep soil moisture stores than shallow
between vegetation types. Process hydrologic modeling is being used to
further investigate these changes.

The most dramatic fire-related VWC increases shown by statistical
models were associated with locations that were forested in 1970, ex-
perienced high severity fire, and were colonized by dense meadow.
According to the model, most of these areas had elevated soil moisture
compared to other forested areas even before burning, and became even
wetter following the vegetation shift (Fig. 10). Based on this result and
observations in the field, we believe that areas that transition from
forest to dense meadow (rather than to a more xeric vegetation type)
following fire have local topography and geology which facilitates high
soil moisture storage in these areas. Such areas may even have been
wetlands in the past, but in relatively dry years during fire suppressed
periods trees were able to colonize (Helms, 1987; Norman and Taylor,
2005) and the high water demand of these trees further reduced the soil
moisture. Once these trees and their high transpiration demand were
removed, enough water was available for the soil to come closer to
saturation, making the ground less favorable to tree seedling growth
and more favorable for grasses and forbs.

Managed wildfire has wrought large changes in vegetation cover
and structure in the ICB, and these have numerous documented benefits
to resilience and ecological health (Boisramé et al., 2017a; Collins and
Stephens, 2007; Ponisio et al., 2016). While we do not find evidence of
large hydrologic responses to these changes, the hydrologic shifts that
have occurred are likely to be broadly positive, creating ecologically
and hydrologically valuable wet summer habitat. Given the un-
certainties associated with the statistical modeling approach taken
here, further efforts to apply process models to, and ultimately improve
hydrological monitoring of, basins experiencing vegetation change
through managed wildfire regimes should remain a research priority for
watershed management.
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Appendix A. Properties of sampling locations

Our sampling strategy attempted to cover the widest range of geographic variables possible within the ICB. This attempt was limited by safety
and accessibility of many areas of the watershed. Although we did not sample the steepest parts of the ICB - as they are prohibitively difficult to
access for measurements - the steepest areas are mainly rock, therefore they have few fires and do not store much soil moisture, making them less
relevant to our study. Although our measurement sites do not always cover the full range of variability in physical characteristics, the measured span
does include the median watershed value for every covariate (Table A.1).

Table A.1
The range of physical covariates for the watershed, labeled “All”, and for the soil moisture measurement locations, labeled “Measured”. The watershed (“All”) covariates are only
calculated for the area between 1890 m and 2490 m in elevation, since this is the elevation range in which all known fires have burned in ICB. These covariates include slope
(degrees), aspect (degrees from North, -1 indicates a horizontal surface), elevation (m), distance from nearest stream (m), Topographic Position Index (TPI), Topographic Wetness
Index (TWI), upslope area (m2 upslope of measurement), times burned in the record (going back to approximately 1930), Years since most recent fire (if no fire on record, marked as
101), Relative Difference Normalized Burn Ratio (RdNBR), and fire severity as a number from 0 = unburned to 4 = high severity.

Covariate Min Max Mean Median

Slope (Degrees) All 0 79 13 12
Slope (Degrees) Measured 0 31 8 7
Aspect (Degrees) All −1 360 190 215
Aspect (Degrees) Measured −1 360 184 217
Elevation (m) All 1890 2490 2270 2291
Elevation (m) Measured 1893 2487 2203 2192
Dist from River (m) All 0 681 128 102
Dist from River (m) Measured 0 436 83 67
TPI All −63 201 −1 −2
TPI Measured −38 55 −6 −7
TWI All 0 17 3 3
TWI Measured 0 15 4 4
Upslope Area (m2) All 0 374,126 344 6
Upslope Area (m2) Measured 0 51,417 1081 21
Times Burned All 0 5 1 1
Times Burned Measured 0 4 2 2
Years Since Fire All 5 101 32 14
Years Since Fire Measured 10 101 19 13
RdNBR All 0 3857 253 172
RdNBR Measured 0 1129 390 339
Severity All 0 4 2 2
Severity Measured 0 4 3 3
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Appendix B. Leaf water potential measurements

This appendix presents details of the leaf water potential measurements used to relate surface VWC to root-zone soil saturation.
Fig. B.1 shows a stronger relationship between water potential (measured in PSI) and surface soil water content in the pre-dawn measurements

compared to those in the afternoon. Certain species separate well in the afternoon measurements: P. jeffreyi has relatively low afternoon leaf water
potentials, indicating that they are not losing much water to transpiration. The Salix species, on the other hand, all have high afternoon leaf water
potentials, suggesting high levels of transpiration.

Appendix C. Continuous measurements

Three temporary weather stations installed in July 2015 monitor temperature, relative humidity, soil moisture, soil temperature, wind speed, and solar
radiation in the ICB. Measurements are recorded every 10 minutes using a Campbell Scientific CR1000 datalogger (http://www.campbellsci.com).

Fig. B.1. Leaf water potentials measured just before dawn and during mid-day, plotted agains surface soil water content (VWC). Each point on the plot represents the average of
measurements in a given species taken at the same time of the same day, in the same location. The species are whitethorn ceanothus (CECO, Ceanothus cordulatus), aspen (Populus
tremuloides), Jeffrey pine (PIJE, Pinus jeffreyi), lodgepole pine (PICO, Pinus contorta, willow (Salix), and unidentified pines (PICO or PIJE).
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All three stations are within an area that has burned twice, most recently in 2004. One station is in a low severity burn area with an intact,
mature, mixed conifer canopy. The other two stations are in nearby burned areas with no mature trees within at least 25m. One of these non-forested
stations is dominated by shrubs, and the other is in a wet, dense meadow dominated by grasses.

These stations are located within 200 m of each other in the southwest region of Illilouette Creek Basin, at an elevation of approximately 2100 m
(close to the mean elevation of the forested area within the ICB, which is 2270 m). They are located uphill of the nearest trails and are over 3km from
the nearest road, and therefore should not be affected by human infrastructure.

Time-domain reflectomer (TDR) probes were installed at three depths ranging from 12 cm to 100 cm at each weather station in order to capture subsurface
water storage dynamics (Fig. C.1). Soil from three depths within each of the pits dug for these installations was analyzed by the UC Davis Analytical Laboratory
for soil texture and percent organic matter (anlab.ucdavis.edu). The surface (top 10 cm) wet meadow soil sample was 13% organic matter. All other soil
samples consisted of over 87% sand particles and less than 5% organic matter, even the deeper wet meadow soils, classifying them as loamy sand.

Appendix D. Model details

We tested all covariates for collinearity, and found no correlations with absolute value above 0.7, which is a common cutoff to determine if
collinearity will impact a model’s ability to determine the impact of individual predictors (Dormann et al., 2013; Shmueli, 2010). We also tested the
collinearity of all gridded data used in the model, not just locations where we measured, and the only high collinearity was between times burned
and time since fire (correlation coefficient of −0.83, Table D.1). Even TWI and slope, which we would expect to be closely related, only had a

Fig. C.1. Soil moisture over the summer of 2016 measured at three weather stations with different dominant vegetation cover: dense conifer forest (A), shrubs (B), and wetland (C). The
measurements are taken at depths of 12 cm (orange), 50–60 cm (brown), and 90–100 cm (black). (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Table D.1
Table of Pearson’s correlation coefficient (ρ) between pairs of covariates used in the random forest model for all measured locations and across all of the ICB.
All covariate pairs with ρ> 0.4 are shown, out of 66 possible pairs.

Covariate 1 Covariate 2 ρ, Measured Sites ρ, All ICB

TWI Upslope Area 0.47 0.35
Time Since Fire Times Burned −0.45 −0.83
Elevation RdNBR −0.43 −0.44
Times Burned RdNBR 0.06 0.43
Time Since Fire RdNBR −0.26 −0.53
Distance from Rivers TPI 0.37 0.59
Elevation Times Burned −0.09 −0.52
Elevation Time Since Fire 0.23 0.56

G. Boisramé et al. Advances in Water Resources 112 (2018) 124–146

140



correlation coefficient of −0.25, and upslope area and TWI had a correlation coefficient of 0.47. Because of these fairly low correlation coefficients
we determined that each of these three covariates provided different information to the model, and chose to include them all as predictors. There
were three pairs of numerical (non-categorical) covariates used in the random forest model with correlation above 0.4 in absolute value (Table D.1).

Looking at all gridded data used in the model, not just locations where we measured, the pairwise correlations were not always the same as for
our measured locations (Table D.1). We also found relatively high correlations (> 0.4) between geographic location (given by latitude and long-
itude) and elevation as well as times burned. For this reason (as well as low statistical significance in initial regression analysis), latitude and
longitude were not included in the model, but this information still shows that there are spatial relationships that govern different covariates. There
were also correlations between 1970 vegetation and time since fire due to wetland vegetation rarely burning, but this is not included in Table D.1 as
vegetation is categorical rather than a numerical covariate.

Soil moisture changes throughout summer can be highly nonlinear, and the changes over summer can be very different in different locations

Fig. D.1. Mean volumetric soil water content (as a %) for a subset of sites spanning a range of fire histories and land cover for May–June (A) and July–August (B). Some sites are missing
one year of July–August data (a missing bar does not indicate a value of 0). Error bars denote standard deviations.
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(Figs. C.1 and D.1). For this reason, we explored the option of creating separate model fits for early summer (prior to July 15) and late summer (after
July 15). For most model coefficients, there were not significant differences between fitting data from the two different time periods (Fig. D.2).

A formal definition of partial dependence for random forest models is provided here for clarification:
Define a model f(X), where X contains p covariates xj with n observations each. An individual value within xj is given by xj, k, =j p1. . , =k n1. . .

The partial dependence, f x( ),͠ j k, of an individual covariate value xj, k is found by taking the average value of f using the given xj, k across all possible
values for the other covariates:

∑=
=

− +f x
n

f x x x x x( ) 1 ( , ..., , , , ..., )͠ j k
i

n

i j i j k j i p i,
1

1, 1, , 1, ,
(D.1)

Calculating f x( )͠ j k, for =k n1. . gives a plot of the mean value of f(X) for a given value of xj, or the partial dependence of f on xj.

Appendix E. Deeper soil moisture

The soil moisture data in Appendix C suggests that the difference between shallow and deep soil moisture is greater in shrubs and wetlands than it
is in closed-canopy forests. This could mean that soil moisture changes resulting from conifer removal may be greater at depth than in surface soil
(top 12 cm). As a preliminary exercise to test the significance of this, we extrapolated the 0–1 m depth-averaged soil moisture values from the
weather stations to the full watershed using vegetation maps. We assumed that the relationship between shallow and deep soil moisture fits a
separate linear equation for each vegetation type:

= + ×C C(Mean VWC over top 1m) (Mean VWC over top 12 cm)v v1, 2,

where C1, v and C2, v are coefficients unique to each vegetation type, v. The stationarity of these coefficients over time and space cannot be verified
given the limited number of deep VWC measurements available. However, further work using additional buried sensors and/or hydrologic models
may validate this estimate.

Using summer soil moisture data from the three weather stations, we calculated the coefficients given in Table E.1.
Applying the appropriate linear equation to the surface soil moisture estimates in each grid cell of our basin-scale model gives an estimated 1-

meter averaged soil moisture value. We used the coefficients for shrub to estimate soil moisture for sparse meadows, under the assumption that
sparse meadows and shrublands both have relatively shallow-rooted vegetation, and that sparse meadow moisture regimes are likely more similar to
shrublands than they are to wet meadows. The results of this exercise showed a 7% increase in soil moisture across the whole watershed under 2014
conditions compared to if the watershed had remained fire suppressed. For comparison, the model of surface soil moisture showed a 2% decrease in
surface soil moisture averaged across the basin.

Table E.1
Linear model coefficients relating soil moisture averaged across the top meter of soil to
moisture in the top 12 cm only.

Veg. Type C1, v C2, v

Forest 0.0 1.2
Shrub 0.0 1.9
Dense Meadow 0.2 0.5
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Fig. D.2. Model coefficients vary depending on time of year. This plot shows the fixed effect coefficients and random effect intercepts from using the linear model. The results are shown
separately for models trained on early summer data only (blue), late summer only (orange) and all data. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)
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This increase in mean soil moisture for the top meter is mainly driven by a large increase in deep soil moisture under the drier dense meadows
(Fig. E.1(A)) compared to the smaller increases in surface soil moisture alone for the same vegetation transitions (Fig. E.2(A)). There are also slight
increases in soil moisture over the top meter when transitioning from conifer to shrubs or sparse meadow (Fig. E.1(B) and (C)), with the largest
changes occurring in areas that were already at the wetter end of the range. For comparison, surface soil moisture was predicted to change very little
or slightly decrease under transitions from conifer to shrubs or sparse meadows (Fig. E.2(B) and (C)).

Because we only have one location with deep soil moisture measurements under each vegetation type, these estimates of change in deeper soil
moisture are highly uncertain. However, this analysis does illustrate the possibility that transitions from conifer to other vegetation types could
increase total soil water stores to a greater degree than is observed using surface soil moisture alone.

Fig. E.1. Modeled VWC over the top meter of soil under different types of vegetation transitions. A: Conifer-dominated in both time periods (black), dense meadow in both time periods
(blue), or locations that transitioned from conifer to dense meadow (green). B: Locations that were either shrub in both 1970 and 2014 (black) or transitioned from conifer to shrub
(green). C: Locations that were either sparse meadow in both 1970 and 2014 (black) or transitioned from conifer to sparse meadow (green). (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
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